Spaces:
cutechicken
/
Runtime error

pepe / app.py
openfree's picture
Update app.py
a862d59 verified
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# ---------- ์ดˆ๊ธฐ ์„ค์ • ๋ฐ ๋ชจ๋ธ ๋กœ๋“œ ----------
SAVE_DIR = "saved_images" # Gradio๊ฐ€ ์ €์žฅ์†Œ ๊ด€๋ฆฌ๋ฅผ ์ˆ˜ํ–‰
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/pepe"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# ์ด๋ฏธ์ง€ ์ €์žฅ
image.save(filepath)
# ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ €์žฅ
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# ๋””๋ ‰ํ† ๋ฆฌ ๋‚ด ์ด๋ฏธ์ง€ ํŒŒ์ผ ๋กœ๋“œ
image_files = [
os.path.join(SAVE_DIR, f)
for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))
]
# ์ƒ์„ฑ ์‹œ๊ฐ ๊ธฐ์ค€ ์ •๋ ฌ (์ตœ์‹  ํŒŒ์ผ ์šฐ์„ )
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
# ๋ณ„๋„ ์‚ฌ์ „ ์ด๋ฏธ์ง€ ์—†์Œ
return []
css = """
/* ๋ฐฐ๊ฒฝ ๊ทธ๋ผ๋””์–ธํŠธ๋ฅผ ์ฃผ๊ฑฐ๋‚˜, ํฐํŠธ/ํƒ€์ดํ‹€ ํฌ๊ธฐ ๋“ฑ์„ ์›ํ•˜๋Š” ๋Œ€๋กœ ๊พธ๋ฐ€ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. */
body {
font-family: 'Open Sans', sans-serif;
background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
margin: 0; /* ๊ธฐ๋ณธ ์—ฌ๋ฐฑ ์ œ๊ฑฐ */
padding: 0;
}
.title {
font-size: 1.8em;
font-weight: bold;
text-align: center;
margin: 20px 0;
}
footer {
visibility: hidden;
}
"""
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
filepath = save_generated_image(image, prompt)
return image, seed, load_generated_images()
# ---------- ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ ----------
examples = [
"Pepe the frog playing fetch with a golden retriever in a sunny park. He wears casual weekend clothes and tosses a bright red frisbee with a goofy grin. The dog leaps gracefully through the air, tail wagging with excitement. The warm afternoon sunlight filters through the trees, creating a humorous meme-like atmosphere. [pepe]",
"Pepe the frog dressed in full military gear, standing at attention with a standard-issue rifle. His crisp uniform is adorned with cartoonish medals. Other frog soldiers march in formation behind him during a grand meme parade, conveying discipline mixed with comical charm. [pepe]",
"A medieval Pepe knight in gleaming armor, proudly holding an ornate sword and shield. He stands in front of a majestic castle with a swirling moat. His shield features a cartoon frog crest, and sunlight gleams off his polished armor, adding a humorous yet epic feel. [pepe]",
"A charismatic Pepe the frog addressing a crowd from a podium. He wears a well-fitted suit and gestures with exaggerated cartoon expressions while speaking. The audience is filled with fellow frog characters holding supportive banners. Cameras capture this grand meme moment. [pepe]",
"Pepe the frog enjoying a peaceful morning at home, reading a newspaper at his kitchen table. He wears comfy pajamas and sips coffee from a novelty frog mug. Sunlight streams through the window, illuminating a quaint plant on the countertop in this cozy, meme-inspired scene. [pepe]",
"Businessman Pepe walking confidently through a sleek office lobby, briefcase in hand. He wears a tailored navy suit, and his wide frog eyes convey determination. Floor-to-ceiling windows reveal a bustling cityscape behind him, blending corporate professionalism with meme humor. [pepe]"
]
# ---------- UI ----------
# ์›ํ•˜๋Š” ๊ทธ๋ผ๋””์˜ค ํ…Œ๋งˆ๋ฅผ ์„ ํƒํ•ด ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” Soft ํ…Œ๋งˆ์— primary_hue="emerald"๋ฅผ ์ง€์ •ํ•œ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค.
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="emerald"), analytics_enabled=False) as demo:
gr.HTML('<div class="title">PEPE Meme Generator</div>')
gr.HTML("""
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-pepe.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-pepe.hf.space&countColor=%23263759" />
</a>
""")
with gr.Tabs() as tabs:
with gr.Tab("Generation"):
with gr.Column():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=6,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
height="auto"
)
refresh_btn = gr.Button("๐Ÿ”„ Refresh Gallery")
# Gallery ์ƒˆ๋กœ๊ณ ์นจ ํ•ธ๋“ค๋Ÿฌ
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
# Run ๋ฒ„ํŠผ & ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ ์ด๋ฒคํŠธ ์ฒ˜๋ฆฌ
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch()