import random import os import uuid from datetime import datetime import gradio as gr import numpy as np import spaces import torch from diffusers import DiffusionPipeline from PIL import Image # ---------- 초기 설정 및 모델 로드 ---------- SAVE_DIR = "saved_images" # Gradio가 저장소 관리를 수행 if not os.path.exists(SAVE_DIR): os.makedirs(SAVE_DIR, exist_ok=True) device = "cuda" if torch.cuda.is_available() else "cpu" repo_id = "black-forest-labs/FLUX.1-dev" adapter_id = "openfree/pepe" pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16) pipeline.load_lora_weights(adapter_id) pipeline = pipeline.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def save_generated_image(image, prompt): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") unique_id = str(uuid.uuid4())[:8] filename = f"{timestamp}_{unique_id}.png" filepath = os.path.join(SAVE_DIR, filename) # 이미지 저장 image.save(filepath) # 메타데이터 저장 metadata_file = os.path.join(SAVE_DIR, "metadata.txt") with open(metadata_file, "a", encoding="utf-8") as f: f.write(f"{filename}|{prompt}|{timestamp}\n") return filepath def load_generated_images(): if not os.path.exists(SAVE_DIR): return [] # 디렉토리 내 이미지 파일 로드 image_files = [ os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) if f.endswith(('.png', '.jpg', '.jpeg', '.webp')) ] # 생성 시각 기준 정렬 (최신 파일 우선) image_files.sort(key=lambda x: os.path.getctime(x), reverse=True) return image_files def load_predefined_images(): # 별도 사전 이미지 없음 return [] css = """ /* 배경 그라디언트를 주거나, 폰트/타이틀 크기 등을 원하는 대로 꾸밀 수 있습니다. */ body { font-family: 'Open Sans', sans-serif; background: linear-gradient(135deg, #f5f7fa, #c3cfe2); margin: 0; /* 기본 여백 제거 */ padding: 0; } .title { font-size: 1.8em; font-weight: bold; text-align: center; margin: 20px 0; } footer { visibility: hidden; } """ @spaces.GPU(duration=120) def inference( prompt: str, seed: int, randomize_seed: bool, width: int, height: int, guidance_scale: float, num_inference_steps: int, lora_scale: float, progress: gr.Progress = gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) image = pipeline( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] filepath = save_generated_image(image, prompt) return image, seed, load_generated_images() # ---------- 예시 프롬프트 ---------- examples = [ "Pepe the frog playing fetch with a golden retriever in a sunny park. He wears casual weekend clothes and tosses a bright red frisbee with a goofy grin. The dog leaps gracefully through the air, tail wagging with excitement. The warm afternoon sunlight filters through the trees, creating a humorous meme-like atmosphere. [pepe]", "Pepe the frog dressed in full military gear, standing at attention with a standard-issue rifle. His crisp uniform is adorned with cartoonish medals. Other frog soldiers march in formation behind him during a grand meme parade, conveying discipline mixed with comical charm. [pepe]", "A medieval Pepe knight in gleaming armor, proudly holding an ornate sword and shield. He stands in front of a majestic castle with a swirling moat. His shield features a cartoon frog crest, and sunlight gleams off his polished armor, adding a humorous yet epic feel. [pepe]", "A charismatic Pepe the frog addressing a crowd from a podium. He wears a well-fitted suit and gestures with exaggerated cartoon expressions while speaking. The audience is filled with fellow frog characters holding supportive banners. Cameras capture this grand meme moment. [pepe]", "Pepe the frog enjoying a peaceful morning at home, reading a newspaper at his kitchen table. He wears comfy pajamas and sips coffee from a novelty frog mug. Sunlight streams through the window, illuminating a quaint plant on the countertop in this cozy, meme-inspired scene. [pepe]", "Businessman Pepe walking confidently through a sleek office lobby, briefcase in hand. He wears a tailored navy suit, and his wide frog eyes convey determination. Floor-to-ceiling windows reveal a bustling cityscape behind him, blending corporate professionalism with meme humor. [pepe]" ] # ---------- UI ---------- # 원하는 그라디오 테마를 선택해 적용합니다. 아래는 Soft 테마에 primary_hue="emerald"를 지정한 예시입니다. with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="emerald"), analytics_enabled=False) as demo: gr.HTML('
PEPE Meme Generator
') gr.HTML(""" """) with gr.Tabs() as tabs: with gr.Tab("Generation"): with gr.Column(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox( label="Randomize seed", value=True ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=30, ) lora_scale = gr.Slider( label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0, ) gr.Examples( examples=examples, inputs=[prompt], outputs=[result, seed], ) with gr.Tab("Gallery"): gr.Markdown("### Generated Images Gallery") generated_gallery = gr.Gallery( label="Generated Images", columns=6, show_label=False, value=load_generated_images(), elem_id="generated_gallery", height="auto" ) refresh_btn = gr.Button("🔄 Refresh Gallery") # Gallery 새로고침 핸들러 def refresh_gallery(): return load_generated_images() refresh_btn.click( fn=refresh_gallery, inputs=None, outputs=generated_gallery, ) # Run 버튼 & 프롬프트 입력 이벤트 처리 gr.on( triggers=[run_button.click, prompt.submit], fn=inference, inputs=[ prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale, ], outputs=[result, seed, generated_gallery], ) demo.queue() demo.launch()