Spaces:
Runtime error
Runtime error
File size: 9,188 Bytes
bce439c 7f98410 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 a862d59 7f98410 f3cae17 7f98410 0e14842 bce439c 04bc9b2 0e14842 bce439c 0e14842 f3cae17 7f98410 a862d59 7f98410 f3cae17 a862d59 f3cae17 7f98410 a862d59 04bc9b2 a862d59 7f98410 0e14842 f3cae17 a862d59 b03c39e f3cae17 04bc9b2 a862d59 04bc9b2 bce439c 0e14842 fda85af bce439c fda85af bce439c 7f98410 9dace64 7f98410 0e14842 a862d59 b03c39e 04bc9b2 b03c39e 0e14842 a862d59 9d997d8 04bc9b2 3ab1623 7f98410 04bc9b2 7f98410 a862d59 7f98410 b03c39e 7f98410 0e14842 bce439c 7f98410 a862d59 7f98410 9dace64 a2bd23b 9dace64 fda85af a862d59 9dace64 a862d59 0e14842 bce439c fda85af bce439c 7f98410 ba0cd8f 0e14842 fda85af 04bc9b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# ---------- ์ด๊ธฐ ์ค์ ๋ฐ ๋ชจ๋ธ ๋ก๋ ----------
SAVE_DIR = "saved_images" # Gradio๊ฐ ์ ์ฅ์ ๊ด๋ฆฌ๋ฅผ ์ํ
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/pepe"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# ์ด๋ฏธ์ง ์ ์ฅ
image.save(filepath)
# ๋ฉํ๋ฐ์ดํฐ ์ ์ฅ
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# ๋๋ ํ ๋ฆฌ ๋ด ์ด๋ฏธ์ง ํ์ผ ๋ก๋
image_files = [
os.path.join(SAVE_DIR, f)
for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))
]
# ์์ฑ ์๊ฐ ๊ธฐ์ค ์ ๋ ฌ (์ต์ ํ์ผ ์ฐ์ )
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
# ๋ณ๋ ์ฌ์ ์ด๋ฏธ์ง ์์
return []
css = """
/* ๋ฐฐ๊ฒฝ ๊ทธ๋ผ๋์ธํธ๋ฅผ ์ฃผ๊ฑฐ๋, ํฐํธ/ํ์ดํ ํฌ๊ธฐ ๋ฑ์ ์ํ๋ ๋๋ก ๊พธ๋ฐ ์ ์์ต๋๋ค. */
body {
font-family: 'Open Sans', sans-serif;
background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
margin: 0; /* ๊ธฐ๋ณธ ์ฌ๋ฐฑ ์ ๊ฑฐ */
padding: 0;
}
.title {
font-size: 1.8em;
font-weight: bold;
text-align: center;
margin: 20px 0;
}
footer {
visibility: hidden;
}
"""
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
filepath = save_generated_image(image, prompt)
return image, seed, load_generated_images()
# ---------- ์์ ํ๋กฌํํธ ----------
examples = [
"Pepe the frog playing fetch with a golden retriever in a sunny park. He wears casual weekend clothes and tosses a bright red frisbee with a goofy grin. The dog leaps gracefully through the air, tail wagging with excitement. The warm afternoon sunlight filters through the trees, creating a humorous meme-like atmosphere. [pepe]",
"Pepe the frog dressed in full military gear, standing at attention with a standard-issue rifle. His crisp uniform is adorned with cartoonish medals. Other frog soldiers march in formation behind him during a grand meme parade, conveying discipline mixed with comical charm. [pepe]",
"A medieval Pepe knight in gleaming armor, proudly holding an ornate sword and shield. He stands in front of a majestic castle with a swirling moat. His shield features a cartoon frog crest, and sunlight gleams off his polished armor, adding a humorous yet epic feel. [pepe]",
"A charismatic Pepe the frog addressing a crowd from a podium. He wears a well-fitted suit and gestures with exaggerated cartoon expressions while speaking. The audience is filled with fellow frog characters holding supportive banners. Cameras capture this grand meme moment. [pepe]",
"Pepe the frog enjoying a peaceful morning at home, reading a newspaper at his kitchen table. He wears comfy pajamas and sips coffee from a novelty frog mug. Sunlight streams through the window, illuminating a quaint plant on the countertop in this cozy, meme-inspired scene. [pepe]",
"Businessman Pepe walking confidently through a sleek office lobby, briefcase in hand. He wears a tailored navy suit, and his wide frog eyes convey determination. Floor-to-ceiling windows reveal a bustling cityscape behind him, blending corporate professionalism with meme humor. [pepe]"
]
# ---------- UI ----------
# ์ํ๋ ๊ทธ๋ผ๋์ค ํ
๋ง๋ฅผ ์ ํํด ์ ์ฉํฉ๋๋ค. ์๋๋ Soft ํ
๋ง์ primary_hue="emerald"๋ฅผ ์ง์ ํ ์์์
๋๋ค.
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="emerald"), analytics_enabled=False) as demo:
gr.HTML('<div class="title">PEPE Meme Generator</div>')
gr.HTML("""
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-pepe.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-pepe.hf.space&countColor=%23263759" />
</a>
""")
with gr.Tabs() as tabs:
with gr.Tab("Generation"):
with gr.Column():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=6,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
height="auto"
)
refresh_btn = gr.Button("๐ Refresh Gallery")
# Gallery ์๋ก๊ณ ์นจ ํธ๋ค๋ฌ
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
# Run ๋ฒํผ & ํ๋กฌํํธ ์
๋ ฅ ์ด๋ฒคํธ ์ฒ๋ฆฌ
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch()
|