Spaces:
cutechicken
/
Runtime error

File size: 9,188 Bytes
bce439c
7f98410
 
 
0e14842
 
bce439c
0e14842
bce439c
fda85af
0e14842
a862d59
 
7f98410
f3cae17
7f98410
0e14842
bce439c
04bc9b2
0e14842
bce439c
 
 
0e14842
 
 
 
f3cae17
7f98410
 
 
 
 
a862d59
7f98410
f3cae17
a862d59
f3cae17
 
 
 
7f98410
 
 
 
 
 
a862d59
04bc9b2
 
 
 
 
a862d59
7f98410
 
0e14842
f3cae17
a862d59
b03c39e
f3cae17
04bc9b2
a862d59
 
 
 
 
 
 
04bc9b2
 
 
 
 
 
 
 
 
 
 
bce439c
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
fda85af
 
bce439c
 
 
 
 
 
 
fda85af
bce439c
7f98410
9dace64
7f98410
0e14842
a862d59
 
b03c39e
04bc9b2
 
 
 
 
 
b03c39e
 
0e14842
a862d59
 
 
 
9d997d8
04bc9b2
 
 
 
 
3ab1623
7f98410
 
04bc9b2
7f98410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a862d59
 
 
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03c39e
7f98410
 
0e14842
bce439c
7f98410
a862d59
7f98410
 
 
 
 
9dace64
 
a2bd23b
9dace64
fda85af
a862d59
9dace64
 
 
 
 
 
 
 
 
a862d59
0e14842
 
bce439c
 
 
 
 
 
 
 
 
fda85af
bce439c
7f98410
ba0cd8f
0e14842
fda85af
04bc9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# ---------- ์ดˆ๊ธฐ ์„ค์ • ๋ฐ ๋ชจ๋ธ ๋กœ๋“œ ----------
SAVE_DIR = "saved_images"  # Gradio๊ฐ€ ์ €์žฅ์†Œ ๊ด€๋ฆฌ๋ฅผ ์ˆ˜ํ–‰
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/pepe"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # ์ด๋ฏธ์ง€ ์ €์žฅ
    image.save(filepath)
    
    # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ €์žฅ
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # ๋””๋ ‰ํ† ๋ฆฌ ๋‚ด ์ด๋ฏธ์ง€ ํŒŒ์ผ ๋กœ๋“œ
    image_files = [
        os.path.join(SAVE_DIR, f)
        for f in os.listdir(SAVE_DIR)
        if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))
    ]
    # ์ƒ์„ฑ ์‹œ๊ฐ ๊ธฐ์ค€ ์ •๋ ฌ (์ตœ์‹  ํŒŒ์ผ ์šฐ์„ )
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

def load_predefined_images():
    # ๋ณ„๋„ ์‚ฌ์ „ ์ด๋ฏธ์ง€ ์—†์Œ
    return []

css = """
/* ๋ฐฐ๊ฒฝ ๊ทธ๋ผ๋””์–ธํŠธ๋ฅผ ์ฃผ๊ฑฐ๋‚˜, ํฐํŠธ/ํƒ€์ดํ‹€ ํฌ๊ธฐ ๋“ฑ์„ ์›ํ•˜๋Š” ๋Œ€๋กœ ๊พธ๋ฐ€ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. */
body {
    font-family: 'Open Sans', sans-serif;
    background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
    margin: 0;  /* ๊ธฐ๋ณธ ์—ฌ๋ฐฑ ์ œ๊ฑฐ */
    padding: 0;
}
.title {
    font-size: 1.8em;
    font-weight: bold;
    text-align: center;
    margin: 20px 0;
}
footer {
    visibility: hidden;
}
"""

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    filepath = save_generated_image(image, prompt)
    return image, seed, load_generated_images()


# ---------- ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ ----------
examples = [
    "Pepe the frog playing fetch with a golden retriever in a sunny park. He wears casual weekend clothes and tosses a bright red frisbee with a goofy grin. The dog leaps gracefully through the air, tail wagging with excitement. The warm afternoon sunlight filters through the trees, creating a humorous meme-like atmosphere. [pepe]",
    "Pepe the frog dressed in full military gear, standing at attention with a standard-issue rifle. His crisp uniform is adorned with cartoonish medals. Other frog soldiers march in formation behind him during a grand meme parade, conveying discipline mixed with comical charm. [pepe]",
    "A medieval Pepe knight in gleaming armor, proudly holding an ornate sword and shield. He stands in front of a majestic castle with a swirling moat. His shield features a cartoon frog crest, and sunlight gleams off his polished armor, adding a humorous yet epic feel. [pepe]",
    "A charismatic Pepe the frog addressing a crowd from a podium. He wears a well-fitted suit and gestures with exaggerated cartoon expressions while speaking. The audience is filled with fellow frog characters holding supportive banners. Cameras capture this grand meme moment. [pepe]",
    "Pepe the frog enjoying a peaceful morning at home, reading a newspaper at his kitchen table. He wears comfy pajamas and sips coffee from a novelty frog mug. Sunlight streams through the window, illuminating a quaint plant on the countertop in this cozy, meme-inspired scene. [pepe]",
    "Businessman Pepe walking confidently through a sleek office lobby, briefcase in hand. He wears a tailored navy suit, and his wide frog eyes convey determination. Floor-to-ceiling windows reveal a bustling cityscape behind him, blending corporate professionalism with meme humor. [pepe]"
]


# ---------- UI ----------
# ์›ํ•˜๋Š” ๊ทธ๋ผ๋””์˜ค ํ…Œ๋งˆ๋ฅผ ์„ ํƒํ•ด ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” Soft ํ…Œ๋งˆ์— primary_hue="emerald"๋ฅผ ์ง€์ •ํ•œ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค.
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="emerald"), analytics_enabled=False) as demo:
    gr.HTML('<div class="title">PEPE Meme Generator</div>')

    gr.HTML("""
        <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-pepe.hf.space">
            <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-pepe.hf.space&countColor=%23263759" />
        </a>
    """)
    
    with gr.Tabs() as tabs:
        with gr.Tab("Generation"):
            with gr.Column():
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                result = gr.Image(label="Result", show_label=False)

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(
                        label="Randomize seed",
                        value=True
                    )

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=768,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=3.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=30,
                        )
                        lora_scale = gr.Slider(
                            label="LoRA scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                        )

                gr.Examples(
                    examples=examples,
                    inputs=[prompt],
                    outputs=[result, seed],
                )

        with gr.Tab("Gallery"):
            gr.Markdown("### Generated Images Gallery")
            generated_gallery = gr.Gallery(
                label="Generated Images",
                columns=6,
                show_label=False,
                value=load_generated_images(),
                elem_id="generated_gallery",
                height="auto"
            )
            refresh_btn = gr.Button("๐Ÿ”„ Refresh Gallery")

    # Gallery ์ƒˆ๋กœ๊ณ ์นจ ํ•ธ๋“ค๋Ÿฌ
    def refresh_gallery():
        return load_generated_images()

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )

    # Run ๋ฒ„ํŠผ & ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ ์ด๋ฒคํŠธ ์ฒ˜๋ฆฌ
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, generated_gallery],
    )

demo.queue()
demo.launch()