Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from tensorflow.keras.applications import ResNet50V2 | |
from tensorflow.keras.models import Sequential, load_model | |
from tensorflow.keras.layers import Dense | |
from tensorflow.keras.utils import to_categorical | |
from tensorflow.keras.applications.resnet_v2 import preprocess_input | |
from tensorflow.keras.preprocessing.image import load_img, img_to_array | |
# 金門具有代表性的栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺五種物種。我們來挑戰五種類別總共用五十張照片, 看能不能打造一個神經網路學會辨識這五種類別。 | |
# 讀入栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺資料圖檔 | |
image_folders = ['Image01', 'Image02', 'Image03'] | |
# 為了後面的需要,我們將五種類別照片的答案用 `labels` 呈現 | |
labels = ["栗喉蜂虎", "戴勝", "鸕鶿"] | |
num_classes = len(labels) | |
base_dir = './classify_image/' | |
# 載入並檢視訓練完成的模型。 | |
model = load_model('my_cnn_model.h5') # Loading the Tensorflow Saved Model (PB) | |
print(model.summary()) | |
# 注意現在主函數做辨識只有五個種類。而且是使用我們自行訓練的 model! | |
def classify_image(inp): | |
inp = inp.reshape((-1, 256, 256, 3)) | |
inp = preprocess_input(inp) | |
prediction = model.predict(inp).flatten() | |
return {labels[i]: float(prediction[i]) for i in range(num_classes)} | |
image = gr.Image(shape=(256, 256), label="栗喉蜂虎、戴勝及鸕鶿照片") | |
label = gr.Label(num_top_classes=num_classes, label="AI ResNet50V2遷移式學習辨識結果") | |
some_text="我能辨識栗喉蜂虎、戴勝及鸕鶿。找張栗喉蜂虎、戴勝及鸕鶿照片來考我吧!" | |
# 我們將金門栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺數據庫中的圖片拿出來當作範例圖片讓使用者使用 | |
sample_images = [] | |
for i in range(num_classes): | |
thedir = base_dir + image_folders[i] | |
for file in os.listdir(thedir): | |
if file == ".git" or file == ".ipynb_checkpoints": | |
continue | |
sample_images.append(base_dir + image_folders[i] + '/' + file) | |
# 最後,將所有東西組裝在一起,就大功告成了! | |
iface = gr.Interface(fn=classify_image, | |
inputs=image, | |
outputs=label, | |
title="AI 栗喉蜂虎、戴勝及鸕鶿辨識機", | |
description=some_text, | |
examples=sample_images, live=True) | |
iface.launch() | |