Spaces:
Sleeping
Sleeping
File size: 2,468 Bytes
5e1cacd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tensorflow.keras.applications import ResNet50V2
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.applications.resnet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import load_img, img_to_array
# 金門具有代表性的栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺五種物種。我們來挑戰五種類別總共用五十張照片, 看能不能打造一個神經網路學會辨識這五種類別。
# 讀入栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺資料圖檔
image_folders = ['Image01', 'Image02', 'Image03']
# 為了後面的需要,我們將五種類別照片的答案用 `labels` 呈現
labels = ["栗喉蜂虎", "戴勝", "鸕鶿"]
num_classes = len(labels)
base_dir = './classify_image/'
# 載入並檢視訓練完成的模型。
model = load_model('my_cnn_model.h5') # Loading the Tensorflow Saved Model (PB)
print(model.summary())
# 注意現在主函數做辨識只有五個種類。而且是使用我們自行訓練的 model!
def classify_image(inp):
inp = inp.reshape((-1, 256, 256, 3))
inp = preprocess_input(inp)
prediction = model.predict(inp).flatten()
return {labels[i]: float(prediction[i]) for i in range(num_classes)}
image = gr.Image(shape=(256, 256), label="栗喉蜂虎、戴勝及鸕鶿照片")
label = gr.Label(num_top_classes=num_classes, label="AI ResNet50V2遷移式學習辨識結果")
some_text="我能辨識栗喉蜂虎、戴勝及鸕鶿。找張栗喉蜂虎、戴勝及鸕鶿照片來考我吧!"
# 我們將金門栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺數據庫中的圖片拿出來當作範例圖片讓使用者使用
sample_images = []
for i in range(num_classes):
thedir = base_dir + image_folders[i]
for file in os.listdir(thedir):
if file == ".git" or file == ".ipynb_checkpoints":
continue
sample_images.append(base_dir + image_folders[i] + '/' + file)
# 最後,將所有東西組裝在一起,就大功告成了!
iface = gr.Interface(fn=classify_image,
inputs=image,
outputs=label,
title="AI 栗喉蜂虎、戴勝及鸕鶿辨識機",
description=some_text,
examples=sample_images, live=True)
iface.launch()
|