Spaces:
Sleeping
Sleeping
Upload 32 files
Browse files- .gitattributes +1 -0
- app.py +57 -0
- classify_image/Image01/Image_01_01.jpg +0 -0
- classify_image/Image01/Image_01_02.jpg +0 -0
- classify_image/Image01/Image_01_03.jpg +0 -0
- classify_image/Image01/Image_01_04.jpg +0 -0
- classify_image/Image01/Image_01_05.jpg +0 -0
- classify_image/Image01/Image_01_06.jpg +0 -0
- classify_image/Image01/Image_01_07.jpg +0 -0
- classify_image/Image01/Image_01_08.jpg +0 -0
- classify_image/Image01/Image_01_09.jpg +0 -0
- classify_image/Image01/Image_01_10.jpg +0 -0
- classify_image/Image02/Image_02_01.jpg +0 -0
- classify_image/Image02/Image_02_02.jpg +0 -0
- classify_image/Image02/Image_02_03.jpg +0 -0
- classify_image/Image02/Image_02_04.jpg +0 -0
- classify_image/Image02/Image_02_05.jpg +0 -0
- classify_image/Image02/Image_02_06.jpg +0 -0
- classify_image/Image02/Image_02_07.jpg +0 -0
- classify_image/Image02/Image_02_08.jpg +0 -0
- classify_image/Image02/Image_02_09.jpg +0 -0
- classify_image/Image02/Image_02_10.jpg +0 -0
- classify_image/Image03/Image_03_01.jpg +0 -0
- classify_image/Image03/Image_03_02.jpg +0 -0
- classify_image/Image03/Image_03_03.jpg +0 -0
- classify_image/Image03/Image_03_04.jpg +0 -0
- classify_image/Image03/Image_03_05.jpg +0 -0
- classify_image/Image03/Image_03_06.jpg +0 -0
- classify_image/Image03/Image_03_07.jpg +0 -0
- classify_image/Image03/Image_03_08.jpg +0 -0
- classify_image/Image03/Image_03_09.jpg +0 -0
- classify_image/Image03/Image_03_10.jpg +3 -0
- my_cnn_model.h5 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
classify_image/Image03/Image_03_10.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
from tensorflow.keras.applications import ResNet50V2
|
8 |
+
from tensorflow.keras.models import Sequential, load_model
|
9 |
+
from tensorflow.keras.layers import Dense
|
10 |
+
from tensorflow.keras.utils import to_categorical
|
11 |
+
from tensorflow.keras.applications.resnet_v2 import preprocess_input
|
12 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
13 |
+
|
14 |
+
# 金門具有代表性的栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺五種物種。我們來挑戰五種類別總共用五十張照片, 看能不能打造一個神經網路學會辨識這五種類別。
|
15 |
+
# 讀入栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺資料圖檔
|
16 |
+
image_folders = ['Image01', 'Image02', 'Image03']
|
17 |
+
|
18 |
+
# 為了後面的需要,我們將五種類別照片的答案用 `labels` 呈現
|
19 |
+
labels = ["栗喉蜂虎", "戴勝", "鸕鶿"]
|
20 |
+
|
21 |
+
num_classes = len(labels)
|
22 |
+
|
23 |
+
base_dir = './classify_image/'
|
24 |
+
|
25 |
+
# 載入並檢視訓練完成的模型。
|
26 |
+
model = load_model('my_cnn_model.h5') # Loading the Tensorflow Saved Model (PB)
|
27 |
+
print(model.summary())
|
28 |
+
|
29 |
+
# 注意現在主函數做辨識只有五個種類。而且是使用我們自行訓練的 model!
|
30 |
+
def classify_image(inp):
|
31 |
+
inp = inp.reshape((-1, 256, 256, 3))
|
32 |
+
inp = preprocess_input(inp)
|
33 |
+
prediction = model.predict(inp).flatten()
|
34 |
+
return {labels[i]: float(prediction[i]) for i in range(num_classes)}
|
35 |
+
|
36 |
+
image = gr.Image(shape=(256, 256), label="栗喉蜂虎、戴勝及鸕鶿照片")
|
37 |
+
label = gr.Label(num_top_classes=num_classes, label="AI ResNet50V2遷移式學習辨識結果")
|
38 |
+
some_text="我能辨識栗喉蜂虎、戴勝及鸕鶿。找張栗喉蜂虎、戴勝及鸕鶿照片來考我吧!"
|
39 |
+
|
40 |
+
# 我們將金門栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺數據庫中的圖片拿出來當作範例圖片讓使用者使用
|
41 |
+
sample_images = []
|
42 |
+
for i in range(num_classes):
|
43 |
+
thedir = base_dir + image_folders[i]
|
44 |
+
for file in os.listdir(thedir):
|
45 |
+
if file == ".git" or file == ".ipynb_checkpoints":
|
46 |
+
continue
|
47 |
+
sample_images.append(base_dir + image_folders[i] + '/' + file)
|
48 |
+
|
49 |
+
# 最後,將所有東西組裝在一起,就大功告成了!
|
50 |
+
iface = gr.Interface(fn=classify_image,
|
51 |
+
inputs=image,
|
52 |
+
outputs=label,
|
53 |
+
title="AI 栗喉蜂虎、戴勝及鸕鶿辨識機",
|
54 |
+
description=some_text,
|
55 |
+
examples=sample_images, live=True)
|
56 |
+
|
57 |
+
iface.launch()
|
classify_image/Image01/Image_01_01.jpg
ADDED
classify_image/Image01/Image_01_02.jpg
ADDED
classify_image/Image01/Image_01_03.jpg
ADDED
classify_image/Image01/Image_01_04.jpg
ADDED
classify_image/Image01/Image_01_05.jpg
ADDED
classify_image/Image01/Image_01_06.jpg
ADDED
classify_image/Image01/Image_01_07.jpg
ADDED
classify_image/Image01/Image_01_08.jpg
ADDED
classify_image/Image01/Image_01_09.jpg
ADDED
classify_image/Image01/Image_01_10.jpg
ADDED
classify_image/Image02/Image_02_01.jpg
ADDED
classify_image/Image02/Image_02_02.jpg
ADDED
classify_image/Image02/Image_02_03.jpg
ADDED
classify_image/Image02/Image_02_04.jpg
ADDED
classify_image/Image02/Image_02_05.jpg
ADDED
classify_image/Image02/Image_02_06.jpg
ADDED
classify_image/Image02/Image_02_07.jpg
ADDED
classify_image/Image02/Image_02_08.jpg
ADDED
classify_image/Image02/Image_02_09.jpg
ADDED
classify_image/Image02/Image_02_10.jpg
ADDED
classify_image/Image03/Image_03_01.jpg
ADDED
classify_image/Image03/Image_03_02.jpg
ADDED
classify_image/Image03/Image_03_03.jpg
ADDED
classify_image/Image03/Image_03_04.jpg
ADDED
classify_image/Image03/Image_03_05.jpg
ADDED
classify_image/Image03/Image_03_06.jpg
ADDED
classify_image/Image03/Image_03_07.jpg
ADDED
classify_image/Image03/Image_03_08.jpg
ADDED
classify_image/Image03/Image_03_09.jpg
ADDED
classify_image/Image03/Image_03_10.jpg
ADDED
Git LFS Details
|
my_cnn_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c39eec74cac34f5820440f4e6e5abcb9265e0c36064c421f41fb359fbd7e68
|
3 |
+
size 94652064
|