ahsanMah's picture
added support for loading models from HF hub
95a02fd
raw
history blame
4.26 kB
import json
from functools import cache
from pickle import load
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image as Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from msma import ScoreFlow, build_model_from_pickle, config_presets
@cache
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
model = ScoreFlow(preset, num_flows=8, device=device)
model.flow.load_state_dict(torch.load(f"{modeldir}/nb8/{preset}/flow.pt"))
return model
@cache
def load_model_from_hub(preset, device):
scorenet = build_model_from_pickle(preset)
hf_config = hf_hub_download(
repo_id="ahsanMah/localizing-edm",
subfolder=preset,
filename="config.json",
cache_dir="/tmp/",
)
with open(hf_config, "rb") as f:
model_params = json.load(f)
print("Loaded:", model_params)
hf_checkpoint = hf_hub_download(
repo_id="ahsanMah/localizing-edm",
subfolder=preset,
filename="model.safetensors",
cache_dir="/tmp/",
)
model = ScoreFlow(scorenet, device=device, **model_params['PatchFlow'])
model.load_state_dict(load_file(hf_checkpoint), strict=True)
return model
@cache
def load_reference_scores(model_dir):
with np.load(f"{model_dir}/refscores.npz", "rb") as f:
ref_nll = f["arr_0"]
return ref_nll
def compute_gmm_likelihood(x_score, model_dir):
with open(f"{model_dir}/gmm.pkl", "rb") as f:
clf = load(f)
nll = -clf.score(x_score)
ref_nll = load_reference_scores(model_dir)
percentile = (ref_nll < nll).mean() * 100
return nll, percentile, ref_nll
def plot_against_reference(nll, ref_nll):
fig, ax = plt.subplots()
ax.hist(ref_nll, label="Reference Scores")
ax.axvline(nll, label="Image Score", c="red", ls="--")
plt.legend()
fig.tight_layout()
return fig
def plot_heatmap(img: Image, heatmap: np.array):
fig, ax = plt.subplots()
cmap = plt.get_cmap("gist_heat")
h = -heatmap[0, 0].copy()
qmin, qmax = np.quantile(h, 0.8), np.quantile(h, 0.999)
h = np.clip(h, a_min=qmin, a_max=qmax)
h = (h - h.min()) / (h.max() - h.min())
h = cmap(h, bytes=True)[:, :, :3]
h = Image.fromarray(h).resize(img.size, resample=Image.Resampling.BILINEAR)
im = Image.blend(img, h, alpha=0.6)
# im = ax.imshow(np.array(im))
# # fig.colorbar(im)
# # plt.grid(False)
# # plt.axis("off")
# fig.tight_layout()
return im
def run_inference(input_img, preset="edm2-img64-s-fid"):
device = "cuda" if torch.cuda.is_available() else "cpu"
# img = center_crop_imagenet(64, img)
input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS)
with torch.inference_mode():
img = np.array(input_img)
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
img = img.float().to(device)
# model = load_model(modeldir="models", preset=preset, device=device)
model = load_model_from_hub(preset=preset, device=device)
img_likelihood = model(img).cpu().numpy()
# img_likelihood = model.scorenet(img).square().sum(1).sum(1).contiguous().float().cpu().unsqueeze(1).numpy()
# print(img_likelihood.shape, img_likelihood.dtype)
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
x = model.scorenet(img)
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
nll, pct, ref_nll = compute_gmm_likelihood(
x.cpu(), model_dir=f"models/{preset}"
)
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
histplot = plot_against_reference(nll, ref_nll)
heatmapplot = plot_heatmap(input_img, img_likelihood)
return outstr, heatmapplot, histplot
demo = gr.Interface(
fn=run_inference,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Dropdown(choices=config_presets.keys(), label="Score Model"),
],
outputs=[
"text",
gr.Image(label="Anomaly Heatmap", min_width=64),
gr.Plot(label="Comparing to Imagenette"),
],
examples=[["goldfish.JPEG", "edm2-img64-s-fid"]],
)
if __name__ == "__main__":
demo.launch()