Spaces:
Runtime error
Runtime error
added support for loading models from HF hub
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from functools import cache
|
2 |
from pickle import load
|
3 |
|
@@ -6,14 +7,42 @@ import matplotlib.pyplot as plt
|
|
6 |
import numpy as np
|
7 |
import PIL.Image as Image
|
8 |
import torch
|
|
|
|
|
9 |
|
10 |
-
from msma import ScoreFlow, config_presets
|
11 |
|
12 |
|
13 |
@cache
|
14 |
-
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"
|
15 |
-
model = ScoreFlow(preset, device=device)
|
16 |
-
model.flow.load_state_dict(torch.load(f"{modeldir}/{preset}/flow.pt"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
return model
|
18 |
|
19 |
|
@@ -62,8 +91,9 @@ def plot_heatmap(img: Image, heatmap: np.array):
|
|
62 |
return im
|
63 |
|
64 |
|
65 |
-
def run_inference(input_img, preset="edm2-img64-s-fid"
|
66 |
|
|
|
67 |
# img = center_crop_imagenet(64, img)
|
68 |
input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS)
|
69 |
|
@@ -71,7 +101,8 @@ def run_inference(input_img, preset="edm2-img64-s-fid", device="cuda"):
|
|
71 |
img = np.array(input_img)
|
72 |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
|
73 |
img = img.float().to(device)
|
74 |
-
model = load_model(modeldir="models", preset=preset, device=device)
|
|
|
75 |
img_likelihood = model(img).cpu().numpy()
|
76 |
# img_likelihood = model.scorenet(img).square().sum(1).sum(1).contiguous().float().cpu().unsqueeze(1).numpy()
|
77 |
# print(img_likelihood.shape, img_likelihood.dtype)
|
@@ -100,10 +131,7 @@ demo = gr.Interface(
|
|
100 |
gr.Image(label="Anomaly Heatmap", min_width=64),
|
101 |
gr.Plot(label="Comparing to Imagenette"),
|
102 |
],
|
103 |
-
|
104 |
-
examples=[
|
105 |
-
['goldfish.JPEG', "edm2-img64-s-fid"]
|
106 |
-
]
|
107 |
)
|
108 |
|
109 |
if __name__ == "__main__":
|
|
|
1 |
+
import json
|
2 |
from functools import cache
|
3 |
from pickle import load
|
4 |
|
|
|
7 |
import numpy as np
|
8 |
import PIL.Image as Image
|
9 |
import torch
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
from safetensors.torch import load_file
|
12 |
|
13 |
+
from msma import ScoreFlow, build_model_from_pickle, config_presets
|
14 |
|
15 |
|
16 |
@cache
|
17 |
+
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
|
18 |
+
model = ScoreFlow(preset, num_flows=8, device=device)
|
19 |
+
model.flow.load_state_dict(torch.load(f"{modeldir}/nb8/{preset}/flow.pt"))
|
20 |
+
return model
|
21 |
+
|
22 |
+
@cache
|
23 |
+
def load_model_from_hub(preset, device):
|
24 |
+
scorenet = build_model_from_pickle(preset)
|
25 |
+
|
26 |
+
hf_config = hf_hub_download(
|
27 |
+
repo_id="ahsanMah/localizing-edm",
|
28 |
+
subfolder=preset,
|
29 |
+
filename="config.json",
|
30 |
+
cache_dir="/tmp/",
|
31 |
+
)
|
32 |
+
with open(hf_config, "rb") as f:
|
33 |
+
model_params = json.load(f)
|
34 |
+
print("Loaded:", model_params)
|
35 |
+
|
36 |
+
hf_checkpoint = hf_hub_download(
|
37 |
+
repo_id="ahsanMah/localizing-edm",
|
38 |
+
subfolder=preset,
|
39 |
+
filename="model.safetensors",
|
40 |
+
cache_dir="/tmp/",
|
41 |
+
)
|
42 |
+
|
43 |
+
model = ScoreFlow(scorenet, device=device, **model_params['PatchFlow'])
|
44 |
+
model.load_state_dict(load_file(hf_checkpoint), strict=True)
|
45 |
+
|
46 |
return model
|
47 |
|
48 |
|
|
|
91 |
return im
|
92 |
|
93 |
|
94 |
+
def run_inference(input_img, preset="edm2-img64-s-fid"):
|
95 |
|
96 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
97 |
# img = center_crop_imagenet(64, img)
|
98 |
input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS)
|
99 |
|
|
|
101 |
img = np.array(input_img)
|
102 |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
|
103 |
img = img.float().to(device)
|
104 |
+
# model = load_model(modeldir="models", preset=preset, device=device)
|
105 |
+
model = load_model_from_hub(preset=preset, device=device)
|
106 |
img_likelihood = model(img).cpu().numpy()
|
107 |
# img_likelihood = model.scorenet(img).square().sum(1).sum(1).contiguous().float().cpu().unsqueeze(1).numpy()
|
108 |
# print(img_likelihood.shape, img_likelihood.dtype)
|
|
|
131 |
gr.Image(label="Anomaly Heatmap", min_width=64),
|
132 |
gr.Plot(label="Comparing to Imagenette"),
|
133 |
],
|
134 |
+
examples=[["goldfish.JPEG", "edm2-img64-s-fid"]],
|
|
|
|
|
|
|
135 |
)
|
136 |
|
137 |
if __name__ == "__main__":
|