File size: 4,256 Bytes
95a02fd
52f9197
be66f33
 
 
52f9197
be66f33
d71875f
be66f33
95a02fd
 
be66f33
95a02fd
be66f33
 
52f9197
95a02fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf573cf
52f9197
cd21582
52f9197
7387897
 
52f9197
 
 
cd21582
7387897
 
be66f33
 
 
7387897
52f9197
be66f33
7387897
be66f33
cd21582
7387897
52f9197
7387897
cd21582
52f9197
 
 
 
cd21582
d71875f
bf573cf
d71875f
cd21582
 
d71875f
cd21582
 
d71875f
 
cd21582
 
 
 
 
 
7387897
cd21582
95a02fd
bf573cf
95a02fd
d71875f
 
bf573cf
 
d71875f
cd21582
d71875f
95a02fd
 
d71875f
cd21582
 
 
bf573cf
 
cd21582
 
 
d71875f
7387897
bf573cf
d71875f
bf573cf
 
be66f33
 
 
 
cd21582
 
 
 
 
 
 
 
 
95a02fd
be66f33
 
52f9197
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import json
from functools import cache
from pickle import load

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image as Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from msma import ScoreFlow, build_model_from_pickle, config_presets


@cache
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
    model = ScoreFlow(preset, num_flows=8, device=device)
    model.flow.load_state_dict(torch.load(f"{modeldir}/nb8/{preset}/flow.pt"))
    return model

@cache
def load_model_from_hub(preset, device):
    scorenet = build_model_from_pickle(preset)

    hf_config = hf_hub_download(
        repo_id="ahsanMah/localizing-edm",
        subfolder=preset,
        filename="config.json",
        cache_dir="/tmp/",
    )
    with open(hf_config, "rb") as f:
        model_params = json.load(f)
        print("Loaded:", model_params)

    hf_checkpoint = hf_hub_download(
        repo_id="ahsanMah/localizing-edm",
        subfolder=preset,
        filename="model.safetensors",
        cache_dir="/tmp/",
    )

    model = ScoreFlow(scorenet, device=device, **model_params['PatchFlow'])
    model.load_state_dict(load_file(hf_checkpoint), strict=True)

    return model


@cache
def load_reference_scores(model_dir):
    with np.load(f"{model_dir}/refscores.npz", "rb") as f:
        ref_nll = f["arr_0"]
    return ref_nll


def compute_gmm_likelihood(x_score, model_dir):
    with open(f"{model_dir}/gmm.pkl", "rb") as f:
        clf = load(f)
        nll = -clf.score(x_score)

    ref_nll = load_reference_scores(model_dir)
    percentile = (ref_nll < nll).mean() * 100

    return nll, percentile, ref_nll


def plot_against_reference(nll, ref_nll):
    fig, ax = plt.subplots()
    ax.hist(ref_nll, label="Reference Scores")
    ax.axvline(nll, label="Image Score", c="red", ls="--")
    plt.legend()
    fig.tight_layout()
    return fig


def plot_heatmap(img: Image, heatmap: np.array):
    fig, ax = plt.subplots()
    cmap = plt.get_cmap("gist_heat")
    h = -heatmap[0, 0].copy()
    qmin, qmax = np.quantile(h, 0.8), np.quantile(h, 0.999)
    h = np.clip(h, a_min=qmin, a_max=qmax)
    h = (h - h.min()) / (h.max() - h.min())
    h = cmap(h, bytes=True)[:, :, :3]
    h = Image.fromarray(h).resize(img.size, resample=Image.Resampling.BILINEAR)
    im = Image.blend(img, h, alpha=0.6)
    # im = ax.imshow(np.array(im))
    # # fig.colorbar(im)
    # # plt.grid(False)
    # # plt.axis("off")
    # fig.tight_layout()
    return im


def run_inference(input_img, preset="edm2-img64-s-fid"):

    device = "cuda" if torch.cuda.is_available() else "cpu"
    # img = center_crop_imagenet(64, img)
    input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS)

    with torch.inference_mode():
        img = np.array(input_img)
        img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
        img = img.float().to(device)
        # model = load_model(modeldir="models", preset=preset, device=device)
        model = load_model_from_hub(preset=preset, device=device)
        img_likelihood = model(img).cpu().numpy()
        # img_likelihood = model.scorenet(img).square().sum(1).sum(1).contiguous().float().cpu().unsqueeze(1).numpy()
        # print(img_likelihood.shape, img_likelihood.dtype)
        img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
        x = model.scorenet(img)
        x = x.square().sum(dim=(2, 3, 4)) ** 0.5
        nll, pct, ref_nll = compute_gmm_likelihood(
            x.cpu(), model_dir=f"models/{preset}"
        )

    outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
    histplot = plot_against_reference(nll, ref_nll)
    heatmapplot = plot_heatmap(input_img, img_likelihood)

    return outstr, heatmapplot, histplot


demo = gr.Interface(
    fn=run_inference,
    inputs=[
        gr.Image(type="pil", label="Input Image"),
        gr.Dropdown(choices=config_presets.keys(), label="Score Model"),
    ],
    outputs=[
        "text",
        gr.Image(label="Anomaly Heatmap", min_width=64),
        gr.Plot(label="Comparing to Imagenette"),
    ],
    examples=[["goldfish.JPEG", "edm2-img64-s-fid"]],
)

if __name__ == "__main__":
    demo.launch()