Spaces:
Runtime error
Runtime error
supporting presets
Browse files
app.py
CHANGED
@@ -6,57 +6,56 @@ import matplotlib.pyplot as plt
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
|
9 |
-
from scorer import build_model
|
10 |
|
11 |
|
12 |
@cache
|
13 |
-
def load_model(device):
|
14 |
-
return build_model(device
|
15 |
|
16 |
@cache
|
17 |
-
def load_reference_scores(
|
18 |
-
with np.load(f"{
|
19 |
ref_nll = f["arr_0"]
|
20 |
return ref_nll
|
21 |
|
22 |
-
def compute_gmm_likelihood(x_score,
|
23 |
-
with open(f"{
|
24 |
clf = load(f)
|
25 |
nll = -clf.score(x_score)
|
26 |
|
27 |
-
ref_nll = load_reference_scores(
|
28 |
percentile = (ref_nll < nll).mean() * 100
|
29 |
|
30 |
-
return nll, percentile
|
31 |
|
32 |
-
def plot_against_reference(nll):
|
33 |
-
ref_nll = load_reference_scores()
|
34 |
-
print(ref_nll.shape)
|
35 |
fig, ax = plt.subplots()
|
36 |
-
ax.hist(ref_nll)
|
37 |
ax.axvline(nll, label='Image Score', c='red', ls="--")
|
38 |
plt.legend()
|
39 |
fig.tight_layout()
|
40 |
return fig
|
41 |
|
42 |
-
|
|
|
43 |
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0)
|
44 |
img = torch.nn.functional.interpolate(img, size=64, mode='bilinear')
|
45 |
-
model = load_model(device=device)
|
46 |
x = model(img.cuda())
|
47 |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
48 |
-
nll, pct = compute_gmm_likelihood(x.cpu())
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
print(plot)
|
52 |
-
outstr = f"Anomaly score: {nll:.3f} -> {pct:.2f} percentile"
|
53 |
return outstr, plot
|
54 |
|
55 |
|
56 |
demo = gr.Interface(
|
57 |
fn=run_inference,
|
58 |
inputs=["image"],
|
59 |
-
outputs=["text", gr.Plot()],
|
60 |
)
|
61 |
|
62 |
if __name__ == "__main__":
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
|
9 |
+
from scorer import build_model, config_presets
|
10 |
|
11 |
|
12 |
@cache
|
13 |
+
def load_model(preset="edm2-img64-s-fid", device='cpu'):
|
14 |
+
return build_model(preset, device)
|
15 |
|
16 |
@cache
|
17 |
+
def load_reference_scores(model_dir):
|
18 |
+
with np.load(f"{model_dir}/refscores.npz", "rb") as f:
|
19 |
ref_nll = f["arr_0"]
|
20 |
return ref_nll
|
21 |
|
22 |
+
def compute_gmm_likelihood(x_score, model_dir):
|
23 |
+
with open(f"{model_dir}/gmm.pkl", "rb") as f:
|
24 |
clf = load(f)
|
25 |
nll = -clf.score(x_score)
|
26 |
|
27 |
+
ref_nll = load_reference_scores(model_dir)
|
28 |
percentile = (ref_nll < nll).mean() * 100
|
29 |
|
30 |
+
return nll, percentile, ref_nll
|
31 |
|
32 |
+
def plot_against_reference(nll, ref_nll):
|
|
|
|
|
33 |
fig, ax = plt.subplots()
|
34 |
+
ax.hist(ref_nll, label="Reference Scores")
|
35 |
ax.axvline(nll, label='Image Score', c='red', ls="--")
|
36 |
plt.legend()
|
37 |
fig.tight_layout()
|
38 |
return fig
|
39 |
|
40 |
+
|
41 |
+
def run_inference(img, preset="edm2-img64-s-fid", device="cuda"):
|
42 |
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0)
|
43 |
img = torch.nn.functional.interpolate(img, size=64, mode='bilinear')
|
44 |
+
model = load_model(preset=preset, device=device)
|
45 |
x = model(img.cuda())
|
46 |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
47 |
+
nll, pct, ref_nll = compute_gmm_likelihood(x.cpu(), model_dir=f"models/{preset}")
|
48 |
+
|
49 |
+
plot = plot_against_reference(nll, ref_nll)
|
50 |
|
51 |
+
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
|
|
|
|
|
52 |
return outstr, plot
|
53 |
|
54 |
|
55 |
demo = gr.Interface(
|
56 |
fn=run_inference,
|
57 |
inputs=["image"],
|
58 |
+
outputs=["text", gr.Plot(label="Comparing to Imagenette")],
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|
scorer.py
CHANGED
@@ -6,12 +6,21 @@ import numpy as np
|
|
6 |
import PIL.Image
|
7 |
import torch
|
8 |
from sklearn.mixture import GaussianMixture
|
|
|
9 |
from sklearn.pipeline import Pipeline
|
10 |
from sklearn.preprocessing import StandardScaler
|
11 |
from tqdm import tqdm
|
12 |
|
13 |
import dnnlib
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class EDMScorer(torch.nn.Module):
|
17 |
def __init__(
|
@@ -34,17 +43,17 @@ class EDMScorer(torch.nn.Module):
|
|
34 |
self.net = net.eval()
|
35 |
|
36 |
# Adjust noise levels based on how far we want to accumulate
|
37 |
-
self.sigma_min =
|
38 |
self.sigma_max = sigma_max * stop_ratio
|
39 |
|
40 |
step_indices = torch.arange(num_steps, dtype=torch.float64, device=device)
|
41 |
t_steps = (
|
42 |
-
sigma_max ** (1 / rho)
|
43 |
+ step_indices
|
44 |
/ (num_steps - 1)
|
45 |
-
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
|
46 |
) ** rho
|
47 |
-
print("Using steps:", t_steps)
|
48 |
|
49 |
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
|
50 |
|
@@ -61,18 +70,14 @@ class EDMScorer(torch.nn.Module):
|
|
61 |
xhat = self.net(x, sigma, force_fp32=force_fp32)
|
62 |
c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2)
|
63 |
score = xhat - (c_skip * x)
|
64 |
-
|
65 |
-
# score_norms = score.mean(1)
|
66 |
-
# score_norms = score.square().sum(dim=(1, 2, 3)) ** 0.5
|
67 |
batch_scores.append(score)
|
68 |
batch_scores = torch.stack(batch_scores, axis=1)
|
69 |
|
70 |
return batch_scores
|
71 |
|
72 |
|
73 |
-
def build_model(
|
74 |
-
|
75 |
-
netpath = f"{model_root}/{netpath}"
|
76 |
with dnnlib.util.open_url(netpath, verbose=1) as f:
|
77 |
data = pickle.load(f)
|
78 |
net = data["ema"]
|
@@ -80,14 +85,43 @@ def build_model(netpath=f"edm2-img64-s-1073741-0.075.pkl", device="cpu"):
|
|
80 |
return model
|
81 |
|
82 |
|
83 |
-
def train_gmm(score_path, outdir
|
|
|
|
|
|
|
84 |
X = torch.load(score_path)
|
85 |
|
86 |
-
gm = GaussianMixture(
|
87 |
clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)])
|
88 |
clf.fit(X)
|
89 |
inlier_nll = -clf.score_samples(X)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with open(f"{outdir}/refscores.npz", "wb") as f:
|
92 |
np.savez_compressed(f, inlier_nll)
|
93 |
|
@@ -108,6 +142,7 @@ def compute_gmm_likelihood(x_score, gmmdir):
|
|
108 |
|
109 |
|
110 |
def test_runner(device="cpu"):
|
|
|
111 |
f = "goldfish.JPEG"
|
112 |
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
|
113 |
image = np.array(image)
|
@@ -118,7 +153,7 @@ def test_runner(device="cpu"):
|
|
118 |
return scores
|
119 |
|
120 |
|
121 |
-
def runner(dataset_path, device="cpu"):
|
122 |
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
|
123 |
refimg, reflabel = dsobj[0]
|
124 |
print(refimg.shape, refimg.dtype, reflabel)
|
@@ -126,7 +161,7 @@ def runner(dataset_path, device="cpu"):
|
|
126 |
dsobj, batch_size=48, num_workers=4, prefetch_factor=2
|
127 |
)
|
128 |
|
129 |
-
model = build_model(device=device)
|
130 |
score_norms = []
|
131 |
|
132 |
for x, _ in tqdm(dsloader):
|
@@ -137,17 +172,25 @@ def runner(dataset_path, device="cpu"):
|
|
137 |
score_norms = torch.cat(score_norms, dim=0)
|
138 |
|
139 |
os.makedirs("out/msma", exist_ok=True)
|
140 |
-
with open("out/msma/
|
141 |
torch.save(score_norms, f)
|
142 |
|
143 |
print(f"Computed score norms for {score_norms.shape[0]} samples")
|
144 |
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
|
151 |
s = s.to("cpu").numpy()
|
152 |
-
nll, pct = compute_gmm_likelihood(s, gmmdir="out/msma/")
|
153 |
print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile")
|
|
|
6 |
import PIL.Image
|
7 |
import torch
|
8 |
from sklearn.mixture import GaussianMixture
|
9 |
+
from sklearn.model_selection import GridSearchCV
|
10 |
from sklearn.pipeline import Pipeline
|
11 |
from sklearn.preprocessing import StandardScaler
|
12 |
from tqdm import tqdm
|
13 |
|
14 |
import dnnlib
|
15 |
|
16 |
+
model_root = "https://nvlabs-fi-cdn.nvidia.com/edm2/posthoc-reconstructions"
|
17 |
+
|
18 |
+
config_presets = {
|
19 |
+
"edm2-img64-s-fid": f"{model_root}/edm2-img64-s-1073741-0.075.pkl", # fid = 1.58
|
20 |
+
"edm2-img64-m-fid": f"{model_root}/edm2-img64-m-2147483-0.060.pkl", # fid = 1.43
|
21 |
+
"edm2-img64-l-fid": f"{model_root}/edm2-img64-l-1073741-0.040.pkl", # fid = 1.33
|
22 |
+
}
|
23 |
+
|
24 |
|
25 |
class EDMScorer(torch.nn.Module):
|
26 |
def __init__(
|
|
|
43 |
self.net = net.eval()
|
44 |
|
45 |
# Adjust noise levels based on how far we want to accumulate
|
46 |
+
self.sigma_min = 1e-1
|
47 |
self.sigma_max = sigma_max * stop_ratio
|
48 |
|
49 |
step_indices = torch.arange(num_steps, dtype=torch.float64, device=device)
|
50 |
t_steps = (
|
51 |
+
self.sigma_max ** (1 / rho)
|
52 |
+ step_indices
|
53 |
/ (num_steps - 1)
|
54 |
+
* (self.sigma_min ** (1 / rho) - self.sigma_max ** (1 / rho))
|
55 |
) ** rho
|
56 |
+
# print("Using steps:", t_steps)
|
57 |
|
58 |
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
|
59 |
|
|
|
70 |
xhat = self.net(x, sigma, force_fp32=force_fp32)
|
71 |
c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2)
|
72 |
score = xhat - (c_skip * x)
|
|
|
|
|
|
|
73 |
batch_scores.append(score)
|
74 |
batch_scores = torch.stack(batch_scores, axis=1)
|
75 |
|
76 |
return batch_scores
|
77 |
|
78 |
|
79 |
+
def build_model(preset="edm2-img64-s-fid", device="cpu"):
|
80 |
+
netpath = config_presets[preset]
|
|
|
81 |
with dnnlib.util.open_url(netpath, verbose=1) as f:
|
82 |
data = pickle.load(f)
|
83 |
net = data["ema"]
|
|
|
85 |
return model
|
86 |
|
87 |
|
88 |
+
def train_gmm(score_path, outdir):
|
89 |
+
def quantile_scorer(gmm, X, y=None):
|
90 |
+
return np.quantile(gmm.score_samples(X), 0.1)
|
91 |
+
|
92 |
X = torch.load(score_path)
|
93 |
|
94 |
+
gm = GaussianMixture(init_params="kmeans", covariance_type="full", max_iter=100000)
|
95 |
clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)])
|
96 |
clf.fit(X)
|
97 |
inlier_nll = -clf.score_samples(X)
|
98 |
|
99 |
+
param_grid = dict(
|
100 |
+
GMM__n_components=range(2, 11, 2),
|
101 |
+
)
|
102 |
+
|
103 |
+
grid = GridSearchCV(
|
104 |
+
estimator=clf,
|
105 |
+
param_grid=param_grid,
|
106 |
+
cv=10,
|
107 |
+
n_jobs=2,
|
108 |
+
verbose=1,
|
109 |
+
scoring=quantile_scorer,
|
110 |
+
)
|
111 |
+
|
112 |
+
grid_result = grid.fit(X)
|
113 |
+
|
114 |
+
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
|
115 |
+
print("-----" * 15)
|
116 |
+
means = grid_result.cv_results_["mean_test_score"]
|
117 |
+
stds = grid_result.cv_results_["std_test_score"]
|
118 |
+
params = grid_result.cv_results_["params"]
|
119 |
+
for mean, stdev, param in zip(means, stds, params):
|
120 |
+
print("%f (%f) with: %r" % (mean, stdev, param))
|
121 |
+
|
122 |
+
clf = grid.best_estimator_
|
123 |
+
|
124 |
+
os.makedirs(outdir, exist_ok=True)
|
125 |
with open(f"{outdir}/refscores.npz", "wb") as f:
|
126 |
np.savez_compressed(f, inlier_nll)
|
127 |
|
|
|
142 |
|
143 |
|
144 |
def test_runner(device="cpu"):
|
145 |
+
# f = "doge.jpg"
|
146 |
f = "goldfish.JPEG"
|
147 |
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
|
148 |
image = np.array(image)
|
|
|
153 |
return scores
|
154 |
|
155 |
|
156 |
+
def runner(preset, dataset_path, device="cpu"):
|
157 |
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
|
158 |
refimg, reflabel = dsobj[0]
|
159 |
print(refimg.shape, refimg.dtype, reflabel)
|
|
|
161 |
dsobj, batch_size=48, num_workers=4, prefetch_factor=2
|
162 |
)
|
163 |
|
164 |
+
model = build_model(preset=preset, device=device)
|
165 |
score_norms = []
|
166 |
|
167 |
for x, _ in tqdm(dsloader):
|
|
|
172 |
score_norms = torch.cat(score_norms, dim=0)
|
173 |
|
174 |
os.makedirs("out/msma", exist_ok=True)
|
175 |
+
with open(f"out/msma/{preset}_imagenette_score_norms.pt", "wb") as f:
|
176 |
torch.save(score_norms, f)
|
177 |
|
178 |
print(f"Computed score norms for {score_norms.shape[0]} samples")
|
179 |
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
183 |
+
preset = "edm2-img64-s-fid"
|
184 |
+
# runner(
|
185 |
+
# preset=preset,
|
186 |
+
# dataset_path="/GROND_STOR/amahmood/datasets/img64/",
|
187 |
+
# device="cuda",
|
188 |
+
# )
|
189 |
+
train_gmm(
|
190 |
+
f"out/msma/{preset}_imagenette_score_norms.pt", outdir=f"out/msma/{preset}"
|
191 |
+
)
|
192 |
+
s = test_runner(device=device)
|
193 |
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
|
194 |
s = s.to("cpu").numpy()
|
195 |
+
nll, pct = compute_gmm_likelihood(s, gmmdir=f"out/msma/{preset}")
|
196 |
print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile")
|