laurenok24's picture
Upload 251 files
5209465 verified
raw
history blame
15.4 kB
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao ([email protected])
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
from collections import OrderedDict
import logging
import os
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import json_tricks as json
import numpy as np
from dataset.JointsDataset import JointsDataset
from nms.nms import oks_nms
from nms.nms import soft_oks_nms
logger = logging.getLogger(__name__)
class COCODataset(JointsDataset):
'''
"keypoints": {
0: "nose",
1: "left_eye",
2: "right_eye",
3: "left_ear",
4: "right_ear",
5: "left_shoulder",
6: "right_shoulder",
7: "left_elbow",
8: "right_elbow",
9: "left_wrist",
10: "right_wrist",
11: "left_hip",
12: "right_hip",
13: "left_knee",
14: "right_knee",
15: "left_ankle",
16: "right_ankle"
},
"skeleton": [
[16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13], [6,7],[6,8],
[7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]]
'''
def __init__(self, cfg, root, image_set, is_train, transform=None):
super().__init__(cfg, root, image_set, is_train, transform)
self.nms_thre = cfg.TEST.NMS_THRE
self.image_thre = cfg.TEST.IMAGE_THRE
self.soft_nms = cfg.TEST.SOFT_NMS
self.oks_thre = cfg.TEST.OKS_THRE
self.in_vis_thre = cfg.TEST.IN_VIS_THRE
self.bbox_file = cfg.TEST.COCO_BBOX_FILE
self.use_gt_bbox = cfg.TEST.USE_GT_BBOX
self.image_width = cfg.MODEL.IMAGE_SIZE[0]
self.image_height = cfg.MODEL.IMAGE_SIZE[1]
self.aspect_ratio = self.image_width * 1.0 / self.image_height
self.pixel_std = 200
self.coco = COCO(self._get_ann_file_keypoint())
# deal with class names
cats = [cat['name']
for cat in self.coco.loadCats(self.coco.getCatIds())]
self.classes = ['__background__'] + cats
logger.info('=> classes: {}'.format(self.classes))
self.num_classes = len(self.classes)
self._class_to_ind = dict(zip(self.classes, range(self.num_classes)))
self._class_to_coco_ind = dict(zip(cats, self.coco.getCatIds()))
self._coco_ind_to_class_ind = dict(
[
(self._class_to_coco_ind[cls], self._class_to_ind[cls])
for cls in self.classes[1:]
]
)
# load image file names
self.image_set_index = self._load_image_set_index()
self.num_images = len(self.image_set_index)
logger.info('=> num_images: {}'.format(self.num_images))
self.num_joints = 17
self.flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8],
[9, 10], [11, 12], [13, 14], [15, 16]]
self.parent_ids = None
self.upper_body_ids = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
self.lower_body_ids = (11, 12, 13, 14, 15, 16)
self.joints_weight = np.array(
[
1., 1., 1., 1., 1., 1., 1., 1.2, 1.2,
1.5, 1.5, 1., 1., 1.2, 1.2, 1.5, 1.5
],
dtype=np.float32
).reshape((self.num_joints, 1))
self.db = self._get_db()
if is_train and cfg.DATASET.SELECT_DATA:
self.db = self.select_data(self.db)
logger.info('=> load {} samples'.format(len(self.db)))
def _get_ann_file_keypoint(self):
""" self.root / annotations / person_keypoints_train2017.json """
prefix = 'person_keypoints' \
if 'test' not in self.image_set else 'image_info'
return os.path.join(
self.root,
'annotations',
prefix + '_' + self.image_set + '.json'
)
def _load_image_set_index(self):
""" image id: int """
image_ids = self.coco.getImgIds()
return image_ids
def _get_db(self):
if self.is_train or self.use_gt_bbox:
# use ground truth bbox
gt_db = self._load_coco_keypoint_annotations()
else:
# use bbox from detection
gt_db = self._load_coco_person_detection_results()
return gt_db
def _load_coco_keypoint_annotations(self):
""" ground truth bbox and keypoints """
gt_db = []
for index in self.image_set_index:
gt_db.extend(self._load_coco_keypoint_annotation_kernal(index))
return gt_db
def _load_coco_keypoint_annotation_kernal(self, index):
"""
coco ann: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id']
iscrowd:
crowd instances are handled by marking their overlaps with all categories to -1
and later excluded in training
bbox:
[x1, y1, w, h]
:param index: coco image id
:return: db entry
"""
im_ann = self.coco.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
annIds = self.coco.getAnnIds(imgIds=index, iscrowd=False)
objs = self.coco.loadAnns(annIds)
# sanitize bboxes
valid_objs = []
for obj in objs:
x, y, w, h = obj['bbox']
x1 = np.max((0, x))
y1 = np.max((0, y))
x2 = np.min((width - 1, x1 + np.max((0, w - 1))))
y2 = np.min((height - 1, y1 + np.max((0, h - 1))))
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
obj['clean_bbox'] = [x1, y1, x2-x1, y2-y1]
valid_objs.append(obj)
objs = valid_objs
rec = []
for obj in objs:
cls = self._coco_ind_to_class_ind[obj['category_id']]
if cls != 1:
continue
# ignore objs without keypoints annotation
if max(obj['keypoints']) == 0:
continue
joints_3d = np.zeros((self.num_joints, 3), dtype=np.float)
joints_3d_vis = np.zeros((self.num_joints, 3), dtype=np.float)
for ipt in range(self.num_joints):
joints_3d[ipt, 0] = obj['keypoints'][ipt * 3 + 0]
joints_3d[ipt, 1] = obj['keypoints'][ipt * 3 + 1]
joints_3d[ipt, 2] = 0
t_vis = obj['keypoints'][ipt * 3 + 2]
if t_vis > 1:
t_vis = 1
joints_3d_vis[ipt, 0] = t_vis
joints_3d_vis[ipt, 1] = t_vis
joints_3d_vis[ipt, 2] = 0
center, scale = self._box2cs(obj['clean_bbox'][:4])
rec.append({
'image': self.image_path_from_index(index),
'center': center,
'scale': scale,
'joints_3d': joints_3d,
'joints_3d_vis': joints_3d_vis,
'filename': '',
'imgnum': 0,
})
return rec
def _box2cs(self, box):
x, y, w, h = box[:4]
return self._xywh2cs(x, y, w, h)
def _xywh2cs(self, x, y, w, h):
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array(
[w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def image_path_from_index(self, index):
""" example: images / train2017 / 000000119993.jpg """
file_name = '%012d.jpg' % index
if '2014' in self.image_set:
file_name = 'COCO_%s_' % self.image_set + file_name
prefix = 'test2017' if 'test' in self.image_set else self.image_set
data_name = prefix + '.zip@' if self.data_format == 'zip' else prefix
image_path = os.path.join(
self.root, 'images', data_name, file_name)
return image_path
def _load_coco_person_detection_results(self):
all_boxes = None
with open(self.bbox_file, 'r') as f:
all_boxes = json.load(f)
if not all_boxes:
logger.error('=> Load %s fail!' % self.bbox_file)
return None
logger.info('=> Total boxes: {}'.format(len(all_boxes)))
kpt_db = []
num_boxes = 0
for n_img in range(0, len(all_boxes)):
det_res = all_boxes[n_img]
if det_res['category_id'] != 1:
continue
img_name = self.image_path_from_index(det_res['image_id'])
box = det_res['bbox']
score = det_res['score']
if score < self.image_thre:
continue
num_boxes = num_boxes + 1
center, scale = self._box2cs(box)
joints_3d = np.zeros((self.num_joints, 3), dtype=np.float)
joints_3d_vis = np.ones(
(self.num_joints, 3), dtype=np.float)
kpt_db.append({
'image': img_name,
'center': center,
'scale': scale,
'score': score,
'joints_3d': joints_3d,
'joints_3d_vis': joints_3d_vis,
})
logger.info('=> Total boxes after fliter low score@{}: {}'.format(
self.image_thre, num_boxes))
return kpt_db
def evaluate(self, cfg, preds, output_dir, all_boxes, img_path,
*args, **kwargs):
rank = cfg.RANK
res_folder = os.path.join(output_dir, 'results')
if not os.path.exists(res_folder):
try:
os.makedirs(res_folder)
except Exception:
logger.error('Fail to make {}'.format(res_folder))
res_file = os.path.join(
res_folder, 'keypoints_{}_results_{}.json'.format(
self.image_set, rank)
)
# person x (keypoints)
_kpts = []
for idx, kpt in enumerate(preds):
_kpts.append({
'keypoints': kpt,
'center': all_boxes[idx][0:2],
'scale': all_boxes[idx][2:4],
'area': all_boxes[idx][4],
'score': all_boxes[idx][5],
'image': int(img_path[idx][-16:-4])
})
# image x person x (keypoints)
kpts = defaultdict(list)
for kpt in _kpts:
kpts[kpt['image']].append(kpt)
# rescoring and oks nms
num_joints = self.num_joints
in_vis_thre = self.in_vis_thre
oks_thre = self.oks_thre
oks_nmsed_kpts = []
for img in kpts.keys():
img_kpts = kpts[img]
for n_p in img_kpts:
box_score = n_p['score']
kpt_score = 0
valid_num = 0
for n_jt in range(0, num_joints):
t_s = n_p['keypoints'][n_jt][2]
if t_s > in_vis_thre:
kpt_score = kpt_score + t_s
valid_num = valid_num + 1
if valid_num != 0:
kpt_score = kpt_score / valid_num
# rescoring
n_p['score'] = kpt_score * box_score
if self.soft_nms:
keep = soft_oks_nms(
[img_kpts[i] for i in range(len(img_kpts))],
oks_thre
)
else:
keep = oks_nms(
[img_kpts[i] for i in range(len(img_kpts))],
oks_thre
)
if len(keep) == 0:
oks_nmsed_kpts.append(img_kpts)
else:
oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])
self._write_coco_keypoint_results(
oks_nmsed_kpts, res_file)
if 'test' not in self.image_set:
info_str = self._do_python_keypoint_eval(
res_file, res_folder)
name_value = OrderedDict(info_str)
return name_value, name_value['AP']
else:
return {'Null': 0}, 0
def _write_coco_keypoint_results(self, keypoints, res_file):
data_pack = [
{
'cat_id': self._class_to_coco_ind[cls],
'cls_ind': cls_ind,
'cls': cls,
'ann_type': 'keypoints',
'keypoints': keypoints
}
for cls_ind, cls in enumerate(self.classes) if not cls == '__background__'
]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
logger.info('=> writing results json to %s' % res_file)
with open(res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
try:
json.load(open(res_file))
except Exception:
content = []
with open(res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(res_file, 'w') as f:
for c in content:
f.write(c)
def _coco_keypoint_results_one_category_kernel(self, data_pack):
cat_id = data_pack['cat_id']
keypoints = data_pack['keypoints']
cat_results = []
for img_kpts in keypoints:
if len(img_kpts) == 0:
continue
_key_points = np.array([img_kpts[k]['keypoints']
for k in range(len(img_kpts))])
key_points = np.zeros(
(_key_points.shape[0], self.num_joints * 3), dtype=np.float
)
for ipt in range(self.num_joints):
key_points[:, ipt * 3 + 0] = _key_points[:, ipt, 0]
key_points[:, ipt * 3 + 1] = _key_points[:, ipt, 1]
key_points[:, ipt * 3 + 2] = _key_points[:, ipt, 2] # keypoints score.
result = [
{
'image_id': img_kpts[k]['image'],
'category_id': cat_id,
'keypoints': list(key_points[k]),
'score': img_kpts[k]['score'],
'center': list(img_kpts[k]['center']),
'scale': list(img_kpts[k]['scale'])
}
for k in range(len(img_kpts))
]
cat_results.extend(result)
return cat_results
def _do_python_keypoint_eval(self, res_file, res_folder):
coco_dt = self.coco.loadRes(res_file)
coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
stats_names = ['AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', 'AR .75', 'AR (M)', 'AR (L)']
info_str = []
for ind, name in enumerate(stats_names):
info_str.append((name, coco_eval.stats[ind]))
return info_str