File size: 15,361 Bytes
5209465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao ([email protected])
# ------------------------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import defaultdict
from collections import OrderedDict
import logging
import os

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import json_tricks as json
import numpy as np

from dataset.JointsDataset import JointsDataset
from nms.nms import oks_nms
from nms.nms import soft_oks_nms


logger = logging.getLogger(__name__)


class COCODataset(JointsDataset):
    '''
    "keypoints": {
        0: "nose",
        1: "left_eye",
        2: "right_eye",
        3: "left_ear",
        4: "right_ear",
        5: "left_shoulder",
        6: "right_shoulder",
        7: "left_elbow",
        8: "right_elbow",
        9: "left_wrist",
        10: "right_wrist",
        11: "left_hip",
        12: "right_hip",
        13: "left_knee",
        14: "right_knee",
        15: "left_ankle",
        16: "right_ankle"
    },
	"skeleton": [
        [16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13], [6,7],[6,8],
        [7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]]
    '''
    def __init__(self, cfg, root, image_set, is_train, transform=None):
        super().__init__(cfg, root, image_set, is_train, transform)
        self.nms_thre = cfg.TEST.NMS_THRE
        self.image_thre = cfg.TEST.IMAGE_THRE
        self.soft_nms = cfg.TEST.SOFT_NMS
        self.oks_thre = cfg.TEST.OKS_THRE
        self.in_vis_thre = cfg.TEST.IN_VIS_THRE
        self.bbox_file = cfg.TEST.COCO_BBOX_FILE
        self.use_gt_bbox = cfg.TEST.USE_GT_BBOX
        self.image_width = cfg.MODEL.IMAGE_SIZE[0]
        self.image_height = cfg.MODEL.IMAGE_SIZE[1]
        self.aspect_ratio = self.image_width * 1.0 / self.image_height
        self.pixel_std = 200

        self.coco = COCO(self._get_ann_file_keypoint())

        # deal with class names
        cats = [cat['name']
                for cat in self.coco.loadCats(self.coco.getCatIds())]
        self.classes = ['__background__'] + cats
        logger.info('=> classes: {}'.format(self.classes))
        self.num_classes = len(self.classes)
        self._class_to_ind = dict(zip(self.classes, range(self.num_classes)))
        self._class_to_coco_ind = dict(zip(cats, self.coco.getCatIds()))
        self._coco_ind_to_class_ind = dict(
            [
                (self._class_to_coco_ind[cls], self._class_to_ind[cls])
                for cls in self.classes[1:]
            ]
        )

        # load image file names
        self.image_set_index = self._load_image_set_index()
        self.num_images = len(self.image_set_index)
        logger.info('=> num_images: {}'.format(self.num_images))

        self.num_joints = 17
        self.flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8],
                           [9, 10], [11, 12], [13, 14], [15, 16]]
        self.parent_ids = None
        self.upper_body_ids = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
        self.lower_body_ids = (11, 12, 13, 14, 15, 16)

        self.joints_weight = np.array(
            [
                1., 1., 1., 1., 1., 1., 1., 1.2, 1.2,
                1.5, 1.5, 1., 1., 1.2, 1.2, 1.5, 1.5
            ],
            dtype=np.float32
        ).reshape((self.num_joints, 1))

        self.db = self._get_db()

        if is_train and cfg.DATASET.SELECT_DATA:
            self.db = self.select_data(self.db)

        logger.info('=> load {} samples'.format(len(self.db)))

    def _get_ann_file_keypoint(self):
        """ self.root / annotations / person_keypoints_train2017.json """
        prefix = 'person_keypoints' \
            if 'test' not in self.image_set else 'image_info'
        return os.path.join(
            self.root,
            'annotations',
            prefix + '_' + self.image_set + '.json'
        )

    def _load_image_set_index(self):
        """ image id: int """
        image_ids = self.coco.getImgIds()
        return image_ids

    def _get_db(self):
        if self.is_train or self.use_gt_bbox:
            # use ground truth bbox
            gt_db = self._load_coco_keypoint_annotations()
        else:
            # use bbox from detection
            gt_db = self._load_coco_person_detection_results()
        return gt_db

    def _load_coco_keypoint_annotations(self):
        """ ground truth bbox and keypoints """
        gt_db = []
        for index in self.image_set_index:
            gt_db.extend(self._load_coco_keypoint_annotation_kernal(index))
        return gt_db

    def _load_coco_keypoint_annotation_kernal(self, index):
        """
        coco ann: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id']
        iscrowd:
            crowd instances are handled by marking their overlaps with all categories to -1
            and later excluded in training
        bbox:
            [x1, y1, w, h]
        :param index: coco image id
        :return: db entry
        """
        im_ann = self.coco.loadImgs(index)[0]
        width = im_ann['width']
        height = im_ann['height']

        annIds = self.coco.getAnnIds(imgIds=index, iscrowd=False)
        objs = self.coco.loadAnns(annIds)

        # sanitize bboxes
        valid_objs = []
        for obj in objs:
            x, y, w, h = obj['bbox']
            x1 = np.max((0, x))
            y1 = np.max((0, y))
            x2 = np.min((width - 1, x1 + np.max((0, w - 1))))
            y2 = np.min((height - 1, y1 + np.max((0, h - 1))))
            if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                obj['clean_bbox'] = [x1, y1, x2-x1, y2-y1]
                valid_objs.append(obj)
        objs = valid_objs

        rec = []
        for obj in objs:
            cls = self._coco_ind_to_class_ind[obj['category_id']]
            if cls != 1:
                continue

            # ignore objs without keypoints annotation
            if max(obj['keypoints']) == 0:
                continue

            joints_3d = np.zeros((self.num_joints, 3), dtype=np.float)
            joints_3d_vis = np.zeros((self.num_joints, 3), dtype=np.float)
            for ipt in range(self.num_joints):
                joints_3d[ipt, 0] = obj['keypoints'][ipt * 3 + 0]
                joints_3d[ipt, 1] = obj['keypoints'][ipt * 3 + 1]
                joints_3d[ipt, 2] = 0
                t_vis = obj['keypoints'][ipt * 3 + 2]
                if t_vis > 1:
                    t_vis = 1
                joints_3d_vis[ipt, 0] = t_vis
                joints_3d_vis[ipt, 1] = t_vis
                joints_3d_vis[ipt, 2] = 0

            center, scale = self._box2cs(obj['clean_bbox'][:4])
            rec.append({
                'image': self.image_path_from_index(index),
                'center': center,
                'scale': scale,
                'joints_3d': joints_3d,
                'joints_3d_vis': joints_3d_vis,
                'filename': '',
                'imgnum': 0,
            })

        return rec

    def _box2cs(self, box):
        x, y, w, h = box[:4]
        return self._xywh2cs(x, y, w, h)

    def _xywh2cs(self, x, y, w, h):
        center = np.zeros((2), dtype=np.float32)
        center[0] = x + w * 0.5
        center[1] = y + h * 0.5

        if w > self.aspect_ratio * h:
            h = w * 1.0 / self.aspect_ratio
        elif w < self.aspect_ratio * h:
            w = h * self.aspect_ratio
        scale = np.array(
            [w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
            dtype=np.float32)
        if center[0] != -1:
            scale = scale * 1.25

        return center, scale

    def image_path_from_index(self, index):
        """ example: images / train2017 / 000000119993.jpg """
        file_name = '%012d.jpg' % index
        if '2014' in self.image_set:
            file_name = 'COCO_%s_' % self.image_set + file_name

        prefix = 'test2017' if 'test' in self.image_set else self.image_set

        data_name = prefix + '.zip@' if self.data_format == 'zip' else prefix

        image_path = os.path.join(
            self.root, 'images', data_name, file_name)

        return image_path

    def _load_coco_person_detection_results(self):
        all_boxes = None
        with open(self.bbox_file, 'r') as f:
            all_boxes = json.load(f)

        if not all_boxes:
            logger.error('=> Load %s fail!' % self.bbox_file)
            return None

        logger.info('=> Total boxes: {}'.format(len(all_boxes)))

        kpt_db = []
        num_boxes = 0
        for n_img in range(0, len(all_boxes)):
            det_res = all_boxes[n_img]
            if det_res['category_id'] != 1:
                continue
            img_name = self.image_path_from_index(det_res['image_id'])
            box = det_res['bbox']
            score = det_res['score']

            if score < self.image_thre:
                continue

            num_boxes = num_boxes + 1

            center, scale = self._box2cs(box)
            joints_3d = np.zeros((self.num_joints, 3), dtype=np.float)
            joints_3d_vis = np.ones(
                (self.num_joints, 3), dtype=np.float)
            kpt_db.append({
                'image': img_name,
                'center': center,
                'scale': scale,
                'score': score,
                'joints_3d': joints_3d,
                'joints_3d_vis': joints_3d_vis,
            })

        logger.info('=> Total boxes after fliter low score@{}: {}'.format(
            self.image_thre, num_boxes))
        return kpt_db

    def evaluate(self, cfg, preds, output_dir, all_boxes, img_path,
                 *args, **kwargs):
        rank = cfg.RANK

        res_folder = os.path.join(output_dir, 'results')
        if not os.path.exists(res_folder):
            try:
                os.makedirs(res_folder)
            except Exception:
                logger.error('Fail to make {}'.format(res_folder))

        res_file = os.path.join(
            res_folder, 'keypoints_{}_results_{}.json'.format(
                self.image_set, rank)
        )

        # person x (keypoints)
        _kpts = []
        for idx, kpt in enumerate(preds):
            _kpts.append({
                'keypoints': kpt,
                'center': all_boxes[idx][0:2],
                'scale': all_boxes[idx][2:4],
                'area': all_boxes[idx][4],
                'score': all_boxes[idx][5],
                'image': int(img_path[idx][-16:-4])
            })
        # image x person x (keypoints)
        kpts = defaultdict(list)
        for kpt in _kpts:
            kpts[kpt['image']].append(kpt)

        # rescoring and oks nms
        num_joints = self.num_joints
        in_vis_thre = self.in_vis_thre
        oks_thre = self.oks_thre
        oks_nmsed_kpts = []
        for img in kpts.keys():
            img_kpts = kpts[img]
            for n_p in img_kpts:
                box_score = n_p['score']
                kpt_score = 0
                valid_num = 0
                for n_jt in range(0, num_joints):
                    t_s = n_p['keypoints'][n_jt][2]
                    if t_s > in_vis_thre:
                        kpt_score = kpt_score + t_s
                        valid_num = valid_num + 1
                if valid_num != 0:
                    kpt_score = kpt_score / valid_num
                # rescoring
                n_p['score'] = kpt_score * box_score

            if self.soft_nms:
                keep = soft_oks_nms(
                    [img_kpts[i] for i in range(len(img_kpts))],
                    oks_thre
                )
            else:
                keep = oks_nms(
                    [img_kpts[i] for i in range(len(img_kpts))],
                    oks_thre
                )

            if len(keep) == 0:
                oks_nmsed_kpts.append(img_kpts)
            else:
                oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])

        self._write_coco_keypoint_results(
            oks_nmsed_kpts, res_file)
        if 'test' not in self.image_set:
            info_str = self._do_python_keypoint_eval(
                res_file, res_folder)
            name_value = OrderedDict(info_str)
            return name_value, name_value['AP']
        else:
            return {'Null': 0}, 0

    def _write_coco_keypoint_results(self, keypoints, res_file):
        data_pack = [
            {
                'cat_id': self._class_to_coco_ind[cls],
                'cls_ind': cls_ind,
                'cls': cls,
                'ann_type': 'keypoints',
                'keypoints': keypoints
            }
            for cls_ind, cls in enumerate(self.classes) if not cls == '__background__'
        ]

        results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
        logger.info('=> writing results json to %s' % res_file)
        with open(res_file, 'w') as f:
            json.dump(results, f, sort_keys=True, indent=4)
        try:
            json.load(open(res_file))
        except Exception:
            content = []
            with open(res_file, 'r') as f:
                for line in f:
                    content.append(line)
            content[-1] = ']'
            with open(res_file, 'w') as f:
                for c in content:
                    f.write(c)

    def _coco_keypoint_results_one_category_kernel(self, data_pack):
        cat_id = data_pack['cat_id']
        keypoints = data_pack['keypoints']
        cat_results = []

        for img_kpts in keypoints:
            if len(img_kpts) == 0:
                continue

            _key_points = np.array([img_kpts[k]['keypoints']
                                    for k in range(len(img_kpts))])
            key_points = np.zeros(
                (_key_points.shape[0], self.num_joints * 3), dtype=np.float
            )

            for ipt in range(self.num_joints):
                key_points[:, ipt * 3 + 0] = _key_points[:, ipt, 0]
                key_points[:, ipt * 3 + 1] = _key_points[:, ipt, 1]
                key_points[:, ipt * 3 + 2] = _key_points[:, ipt, 2]  # keypoints score.

            result = [
                {
                    'image_id': img_kpts[k]['image'],
                    'category_id': cat_id,
                    'keypoints': list(key_points[k]),
                    'score': img_kpts[k]['score'],
                    'center': list(img_kpts[k]['center']),
                    'scale': list(img_kpts[k]['scale'])
                }
                for k in range(len(img_kpts))
            ]
            cat_results.extend(result)

        return cat_results

    def _do_python_keypoint_eval(self, res_file, res_folder):
        coco_dt = self.coco.loadRes(res_file)
        coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
        coco_eval.params.useSegm = None
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

        stats_names = ['AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', 'AR .75', 'AR (M)', 'AR (L)']

        info_str = []
        for ind, name in enumerate(stats_names):
            info_str.append((name, coco_eval.stats[ind]))

        return info_str