laurenok24 commited on
Commit
5209465
·
verified ·
1 Parent(s): 3b23f31

Upload 251 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. deep-high-resolution-net.pytorch/.amlignore +6 -0
  3. deep-high-resolution-net.pytorch/.amlignore.amltmp +6 -0
  4. deep-high-resolution-net.pytorch/.gitignore +95 -0
  5. deep-high-resolution-net.pytorch/LICENSE +21 -0
  6. deep-high-resolution-net.pytorch/README.md +276 -0
  7. deep-high-resolution-net.pytorch/_config.yml +1 -0
  8. deep-high-resolution-net.pytorch/data/mpii/annot/.amlignore +6 -0
  9. deep-high-resolution-net.pytorch/data/mpii/annot/.amlignore.amltmp +6 -0
  10. deep-high-resolution-net.pytorch/data/mpii/annot/all_poses.json +0 -0
  11. deep-high-resolution-net.pytorch/data/mpii/annot/gt_valid.mat +0 -0
  12. deep-high-resolution-net.pytorch/data/mpii/annot/gt_valid_old.mat +0 -0
  13. deep-high-resolution-net.pytorch/data/mpii/annot/pose_train.json +3 -0
  14. deep-high-resolution-net.pytorch/data/mpii/annot/pose_train.json.amltmp +3 -0
  15. deep-high-resolution-net.pytorch/data/mpii/annot/train.json +0 -0
  16. deep-high-resolution-net.pytorch/data/mpii/annot/train.json.amltmp +0 -0
  17. deep-high-resolution-net.pytorch/data/mpii/annot/train_all.json +0 -0
  18. deep-high-resolution-net.pytorch/data/mpii/annot/train_all.json.amltmp +0 -0
  19. deep-high-resolution-net.pytorch/data/mpii/annot/valid.json +0 -0
  20. deep-high-resolution-net.pytorch/data/mpii/annot/valid_old.json +0 -0
  21. deep-high-resolution-net.pytorch/data/mpii/images/01_17_00028953.jpg +0 -0
  22. deep-high-resolution-net.pytorch/data/mpii/images/01_17_00028984.jpg +0 -0
  23. deep-high-resolution-net.pytorch/data/mpii/images/01_17_00028990.jpg +0 -0
  24. deep-high-resolution-net.pytorch/data/mpii/images/03_2_00010016.jpg +0 -0
  25. deep-high-resolution-net.pytorch/data/mpii/images/04_98_00166163.jpg +0 -0
  26. deep-high-resolution-net.pytorch/data/mpii/images/09_54_00082209.jpg +0 -0
  27. deep-high-resolution-net.pytorch/data/mpii/images/09_59_00090044.jpg +0 -0
  28. deep-high-resolution-net.pytorch/data/mpii/images/13_2_00005250.jpg +0 -0
  29. deep-high-resolution-net.pytorch/data/mpii/images/14_1_00001161.jpg +0 -0
  30. deep-high-resolution-net.pytorch/data/mpii/images/FINADivingWorldCup2021_Men10m_final_r6_0_01228.jpg +0 -0
  31. deep-high-resolution-net.pytorch/data/mpii/images/FINADivingWorldCup2021_Women10m_semifinal_r4_9_15342.jpg +0 -0
  32. deep-high-resolution-net.pytorch/data/mpii/images/FINAWorldChampionships2019_Women10m_final_r2_4_08105.jpg +0 -0
  33. deep-high-resolution-net.pytorch/data/mpii/images/d00027.jpg +0 -0
  34. deep-high-resolution-net.pytorch/data/mpii/images/d00033.jpg +0 -0
  35. deep-high-resolution-net.pytorch/data/mpii/images/d00219.jpg +0 -0
  36. deep-high-resolution-net.pytorch/data/mpii/images/d00225.jpg +0 -0
  37. deep-high-resolution-net.pytorch/data/mpii/images/d00231.jpg +0 -0
  38. deep-high-resolution-net.pytorch/data/mpii/images/d00543.jpg +0 -0
  39. deep-high-resolution-net.pytorch/data/mpii/images/d00557.jpg +0 -0
  40. deep-high-resolution-net.pytorch/data/mpii/images/d00580.jpg +0 -0
  41. deep-high-resolution-net.pytorch/data/mpii/images/d00594.jpg +0 -0
  42. deep-high-resolution-net.pytorch/data/mpii/images/d00741.jpg +0 -0
  43. deep-high-resolution-net.pytorch/data/mpii/images/d00755.jpg +0 -0
  44. deep-high-resolution-net.pytorch/data/mpii/images/d00769.jpg +0 -0
  45. deep-high-resolution-net.pytorch/data/mpii/images/d00782.jpg +0 -0
  46. deep-high-resolution-net.pytorch/data/mpii/images/d00796.jpg +0 -0
  47. deep-high-resolution-net.pytorch/data/mpii/images/d00966.jpg +0 -0
  48. deep-high-resolution-net.pytorch/data/mpii/images/d00972.jpg +0 -0
  49. deep-high-resolution-net.pytorch/data/mpii/images/d00999.jpg +0 -0
  50. deep-high-resolution-net.pytorch/data/mpii/images/d01107.jpg +0 -0
.gitattributes CHANGED
@@ -40,3 +40,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
40
  01_33.mp4 filter=lfs diff=lfs merge=lfs -text
41
  01_40.mov filter=lfs diff=lfs merge=lfs -text
42
  01_76.mp4 filter=lfs diff=lfs merge=lfs -text
 
 
40
  01_33.mp4 filter=lfs diff=lfs merge=lfs -text
41
  01_40.mov filter=lfs diff=lfs merge=lfs -text
42
  01_76.mp4 filter=lfs diff=lfs merge=lfs -text
43
+ deep-high-resolution-net.pytorch/demo/hrnet-demo.gif filter=lfs diff=lfs merge=lfs -text
deep-high-resolution-net.pytorch/.amlignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
deep-high-resolution-net.pytorch/.amlignore.amltmp ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
deep-high-resolution-net.pytorch/.gitignore ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # IntelliJ project files
2
+ .idea
3
+ *.iml
4
+ out
5
+ gen
6
+
7
+ ### Vim template
8
+ [._]*.s[a-w][a-z]
9
+ [._]s[a-w][a-z]
10
+ *.un~
11
+ Session.vim
12
+ .netrwhist
13
+ *~
14
+
15
+ ### IPythonNotebook template
16
+ # Temporary data
17
+ .ipynb_checkpoints/
18
+
19
+ ### Python template
20
+ # Byte-compiled / optimized / DLL files
21
+ __pycache__/
22
+ *.py[cod]
23
+ *$py.class
24
+
25
+ # C extensions
26
+ *.so
27
+
28
+ # Distribution / packaging
29
+ .Python
30
+ env/
31
+ build/
32
+ develop-eggs/
33
+ dist/
34
+ downloads/
35
+ eggs/
36
+ .eggs/
37
+ #lib/
38
+ #lib64/
39
+ parts/
40
+ sdist/
41
+ var/
42
+ *.egg-info/
43
+ .installed.cfg
44
+ *.egg
45
+
46
+ # PyInstaller
47
+ # Usually these files are written by a python script from a template
48
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
49
+ *.manifest
50
+ *.spec
51
+
52
+ # Installer logs
53
+ pip-log.txt
54
+ pip-delete-this-directory.txt
55
+
56
+ # Unit test / coverage reports
57
+ htmlcov/
58
+ .tox/
59
+ .coverage
60
+ .coverage.*
61
+ .cache
62
+ nosetests.xml
63
+ coverage.xml
64
+ *,cover
65
+
66
+ # Translations
67
+ *.mo
68
+ *.pot
69
+
70
+ # Django stuff:
71
+ *.log
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ target/
78
+
79
+ *.ipynb
80
+ *.params
81
+ *.json
82
+ .vscode/
83
+
84
+ lib/pycocotools/_mask.c
85
+ lib/nms/cpu_nms.c
86
+
87
+ output/*
88
+ models/*
89
+ log/*
90
+ data/*
91
+ external/
92
+
93
+ draws/
94
+ plot/
95
+
deep-high-resolution-net.pytorch/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2019 Leo Xiao
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
deep-high-resolution-net.pytorch/README.md ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019)
2
+ ## News
3
+ - [2021/04/12] Welcome to check out our recent work on bottom-up pose estimation (CVPR 2021) [HRNet-DEKR](https://github.com/HRNet/DEKR)!
4
+ - [2020/07/05] [A very nice blog](https://towardsdatascience.com/overview-of-human-pose-estimation-neural-networks-hrnet-higherhrnet-architectures-and-faq-1954b2f8b249) from Towards Data Science introducing HRNet and HigherHRNet for human pose estimation.
5
+ - [2020/03/13] A longer version is accepted by TPAMI: [Deep High-Resolution Representation Learning for Visual Recognition](https://arxiv.org/pdf/1908.07919.pdf). It includes more HRNet applications, and the codes are available: [semantic segmentation](https://github.com/HRNet/HRNet-Semantic-Segmentation), [objection detection](https://github.com/HRNet/HRNet-Object-Detection), [facial landmark detection](https://github.com/HRNet/HRNet-Facial-Landmark-Detection), and [image classification](https://github.com/HRNet/HRNet-Image-Classification).
6
+ - [2020/02/01] We have added demo code for HRNet. Thanks [Alex Simes](https://github.com/alex9311).
7
+ - Visualization code for showing the pose estimation results. Thanks Depu!
8
+ - [2019/08/27] HigherHRNet is now on [ArXiv](https://arxiv.org/abs/1908.10357), which is a bottom-up approach for human pose estimation powerd by HRNet. We will also release code and models at [Higher-HRNet-Human-Pose-Estimation](https://github.com/HRNet/Higher-HRNet-Human-Pose-Estimation), stay tuned!
9
+ - Our new work [High-Resolution Representations for Labeling Pixels and Regions](https://arxiv.org/abs/1904.04514) is available at [HRNet](https://github.com/HRNet). Our HRNet has been applied to a wide range of vision tasks, such as [image classification](https://github.com/HRNet/HRNet-Image-Classification), [objection detection](https://github.com/HRNet/HRNet-Object-Detection), [semantic segmentation](https://github.com/HRNet/HRNet-Semantic-Segmentation) and [facial landmark](https://github.com/HRNet/HRNet-Facial-Landmark-Detection).
10
+
11
+ ## Introduction
12
+ This is an official pytorch implementation of [*Deep High-Resolution Representation Learning for Human Pose Estimation*](https://arxiv.org/abs/1902.09212).
13
+ In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods **recover high-resolution representations from low-resolution representations** produced by a high-to-low resolution network. Instead, our proposed network **maintains high-resolution representations** through the whole process.
14
+ We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks **in parallel**. We conduct **repeated multi-scale fusions** such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset. </br>
15
+
16
+ ![Illustrating the architecture of the proposed HRNet](/figures/hrnet.png)
17
+ ## Main Results
18
+ ### Results on MPII val
19
+ | Arch | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean | [email protected] |
20
+ |--------------------|------|----------|-------|-------|------|------|-------|------|----------|
21
+ | pose_resnet_50 | 96.4 | 95.3 | 89.0 | 83.2 | 88.4 | 84.0 | 79.6 | 88.5 | 34.0 |
22
+ | pose_resnet_101 | 96.9 | 95.9 | 89.5 | 84.4 | 88.4 | 84.5 | 80.7 | 89.1 | 34.0 |
23
+ | pose_resnet_152 | 97.0 | 95.9 | 90.0 | 85.0 | 89.2 | 85.3 | 81.3 | 89.6 | 35.0 |
24
+ | **pose_hrnet_w32** | 97.1 | 95.9 | 90.3 | 86.4 | 89.1 | 87.1 | 83.3 | 90.3 | 37.7 |
25
+
26
+ ### Note:
27
+ - Flip test is used.
28
+ - Input size is 256x256
29
+ - pose_resnet_[50,101,152] is our previous work of [*Simple Baselines for Human Pose Estimation and Tracking*](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html)
30
+
31
+ ### Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
32
+ | Arch | Input size | #Params | GFLOPs | AP | Ap .5 | AP .75 | AP (M) | AP (L) | AR | AR .5 | AR .75 | AR (M) | AR (L) |
33
+ |--------------------|------------|---------|--------|-------|-------|--------|--------|--------|-------|-------|--------|--------|--------|
34
+ | pose_resnet_50 | 256x192 | 34.0M | 8.9 | 0.704 | 0.886 | 0.783 | 0.671 | 0.772 | 0.763 | 0.929 | 0.834 | 0.721 | 0.824 |
35
+ | pose_resnet_50 | 384x288 | 34.0M | 20.0 | 0.722 | 0.893 | 0.789 | 0.681 | 0.797 | 0.776 | 0.932 | 0.838 | 0.728 | 0.846 |
36
+ | pose_resnet_101 | 256x192 | 53.0M | 12.4 | 0.714 | 0.893 | 0.793 | 0.681 | 0.781 | 0.771 | 0.934 | 0.840 | 0.730 | 0.832 |
37
+ | pose_resnet_101 | 384x288 | 53.0M | 27.9 | 0.736 | 0.896 | 0.803 | 0.699 | 0.811 | 0.791 | 0.936 | 0.851 | 0.745 | 0.858 |
38
+ | pose_resnet_152 | 256x192 | 68.6M | 15.7 | 0.720 | 0.893 | 0.798 | 0.687 | 0.789 | 0.778 | 0.934 | 0.846 | 0.736 | 0.839 |
39
+ | pose_resnet_152 | 384x288 | 68.6M | 35.3 | 0.743 | 0.896 | 0.811 | 0.705 | 0.816 | 0.797 | 0.937 | 0.858 | 0.751 | 0.863 |
40
+ | **pose_hrnet_w32** | 256x192 | 28.5M | 7.1 | 0.744 | 0.905 | 0.819 | 0.708 | 0.810 | 0.798 | 0.942 | 0.865 | 0.757 | 0.858 |
41
+ | **pose_hrnet_w32** | 384x288 | 28.5M | 16.0 | 0.758 | 0.906 | 0.825 | 0.720 | 0.827 | 0.809 | 0.943 | 0.869 | 0.767 | 0.871 |
42
+ | **pose_hrnet_w48** | 256x192 | 63.6M | 14.6 | 0.751 | 0.906 | 0.822 | 0.715 | 0.818 | 0.804 | 0.943 | 0.867 | 0.762 | 0.864 |
43
+ | **pose_hrnet_w48** | 384x288 | 63.6M | 32.9 | 0.763 | 0.908 | 0.829 | 0.723 | 0.834 | 0.812 | 0.942 | 0.871 | 0.767 | 0.876 |
44
+
45
+ ### Note:
46
+ - Flip test is used.
47
+ - Person detector has person AP of 56.4 on COCO val2017 dataset.
48
+ - pose_resnet_[50,101,152] is our previous work of [*Simple Baselines for Human Pose Estimation and Tracking*](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html).
49
+ - GFLOPs is for convolution and linear layers only.
50
+
51
+
52
+ ### Results on COCO test-dev2017 with detector having human AP of 60.9 on COCO test-dev2017 dataset
53
+ | Arch | Input size | #Params | GFLOPs | AP | Ap .5 | AP .75 | AP (M) | AP (L) | AR | AR .5 | AR .75 | AR (M) | AR (L) |
54
+ |--------------------|------------|---------|--------|-------|-------|--------|--------|--------|-------|-------|--------|--------|--------|
55
+ | pose_resnet_152 | 384x288 | 68.6M | 35.3 | 0.737 | 0.919 | 0.828 | 0.713 | 0.800 | 0.790 | 0.952 | 0.856 | 0.748 | 0.849 |
56
+ | **pose_hrnet_w48** | 384x288 | 63.6M | 32.9 | 0.755 | 0.925 | 0.833 | 0.719 | 0.815 | 0.805 | 0.957 | 0.874 | 0.763 | 0.863 |
57
+ | **pose_hrnet_w48\*** | 384x288 | 63.6M | 32.9 | 0.770 | 0.927 | 0.845 | 0.734 | 0.831 | 0.820 | 0.960 | 0.886 | 0.778 | 0.877 |
58
+
59
+ ### Note:
60
+ - Flip test is used.
61
+ - Person detector has person AP of 60.9 on COCO test-dev2017 dataset.
62
+ - pose_resnet_152 is our previous work of [*Simple Baselines for Human Pose Estimation and Tracking*](http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html).
63
+ - GFLOPs is for convolution and linear layers only.
64
+ - pose_hrnet_w48\* means using additional data from [AI challenger](https://challenger.ai/dataset/keypoint) for training.
65
+
66
+ ## Environment
67
+ The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA P100 GPU cards. Other platforms or GPU cards are not fully tested.
68
+
69
+ ## Quick start
70
+ ### Installation
71
+ 1. Install pytorch >= v1.0.0 following [official instruction](https://pytorch.org/).
72
+ **Note that if you use pytorch's version < v1.0.0, you should following the instruction at <https://github.com/Microsoft/human-pose-estimation.pytorch> to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)**
73
+ 2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.
74
+ 3. Install dependencies:
75
+ ```
76
+ pip install -r requirements.txt
77
+ ```
78
+ 4. Make libs:
79
+ ```
80
+ cd ${POSE_ROOT}/lib
81
+ make
82
+ ```
83
+ 5. Install [COCOAPI](https://github.com/cocodataset/cocoapi):
84
+ ```
85
+ # COCOAPI=/path/to/clone/cocoapi
86
+ git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
87
+ cd $COCOAPI/PythonAPI
88
+ # Install into global site-packages
89
+ make install
90
+ # Alternatively, if you do not have permissions or prefer
91
+ # not to install the COCO API into global site-packages
92
+ python3 setup.py install --user
93
+ ```
94
+ Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.
95
+ 4. Init output(training model output directory) and log(tensorboard log directory) directory:
96
+
97
+ ```
98
+ mkdir output
99
+ mkdir log
100
+ ```
101
+
102
+ Your directory tree should look like this:
103
+
104
+ ```
105
+ ${POSE_ROOT}
106
+ ├── data
107
+ ├── experiments
108
+ ├── lib
109
+ ├── log
110
+ ├── models
111
+ ├── output
112
+ ├── tools
113
+ ├── README.md
114
+ └── requirements.txt
115
+ ```
116
+
117
+ 6. Download pretrained models from our model zoo([GoogleDrive](https://drive.google.com/drive/folders/1hOTihvbyIxsm5ygDpbUuJ7O_tzv4oXjC?usp=sharing) or [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blW231MH2krnmLq5kkQ))
118
+ ```
119
+ ${POSE_ROOT}
120
+ `-- models
121
+ `-- pytorch
122
+ |-- imagenet
123
+ | |-- hrnet_w32-36af842e.pth
124
+ | |-- hrnet_w48-8ef0771d.pth
125
+ | |-- resnet50-19c8e357.pth
126
+ | |-- resnet101-5d3b4d8f.pth
127
+ | `-- resnet152-b121ed2d.pth
128
+ |-- pose_coco
129
+ | |-- pose_hrnet_w32_256x192.pth
130
+ | |-- pose_hrnet_w32_384x288.pth
131
+ | |-- pose_hrnet_w48_256x192.pth
132
+ | |-- pose_hrnet_w48_384x288.pth
133
+ | |-- pose_resnet_101_256x192.pth
134
+ | |-- pose_resnet_101_384x288.pth
135
+ | |-- pose_resnet_152_256x192.pth
136
+ | |-- pose_resnet_152_384x288.pth
137
+ | |-- pose_resnet_50_256x192.pth
138
+ | `-- pose_resnet_50_384x288.pth
139
+ `-- pose_mpii
140
+ |-- pose_hrnet_w32_256x256.pth
141
+ |-- pose_hrnet_w48_256x256.pth
142
+ |-- pose_resnet_101_256x256.pth
143
+ |-- pose_resnet_152_256x256.pth
144
+ `-- pose_resnet_50_256x256.pth
145
+
146
+ ```
147
+
148
+ ### Data preparation
149
+ **For MPII data**, please download from [MPII Human Pose Dataset](http://human-pose.mpi-inf.mpg.de/). The original annotation files are in matlab format. We have converted them into json format, you also need to download them from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blW00SqrairNetmeVu4) or [GoogleDrive](https://drive.google.com/drive/folders/1En_VqmStnsXMdldXA6qpqEyDQulnmS3a?usp=sharing).
150
+ Extract them under {POSE_ROOT}/data, and make them look like this:
151
+ ```
152
+ ${POSE_ROOT}
153
+ |-- data
154
+ `-- |-- mpii
155
+ `-- |-- annot
156
+ | |-- gt_valid.mat
157
+ | |-- test.json
158
+ | |-- train.json
159
+ | |-- trainval.json
160
+ | `-- valid.json
161
+ `-- images
162
+ |-- 000001163.jpg
163
+ |-- 000003072.jpg
164
+ ```
165
+
166
+ **For COCO data**, please download from [COCO download](http://cocodataset.org/#download), 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 and test-dev2017 to reproduce our multi-person pose estimation results. Please download from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing).
167
+ Download and extract them under {POSE_ROOT}/data, and make them look like this:
168
+ ```
169
+ ${POSE_ROOT}
170
+ |-- data
171
+ `-- |-- coco
172
+ `-- |-- annotations
173
+ | |-- person_keypoints_train2017.json
174
+ | `-- person_keypoints_val2017.json
175
+ |-- person_detection_results
176
+ | |-- COCO_val2017_detections_AP_H_56_person.json
177
+ | |-- COCO_test-dev2017_detections_AP_H_609_person.json
178
+ `-- images
179
+ |-- train2017
180
+ | |-- 000000000009.jpg
181
+ | |-- 000000000025.jpg
182
+ | |-- 000000000030.jpg
183
+ | |-- ...
184
+ `-- val2017
185
+ |-- 000000000139.jpg
186
+ |-- 000000000285.jpg
187
+ |-- 000000000632.jpg
188
+ |-- ...
189
+ ```
190
+
191
+ ### Training and Testing
192
+
193
+ #### Testing on MPII dataset using model zoo's models([GoogleDrive](https://drive.google.com/drive/folders/1hOTihvbyIxsm5ygDpbUuJ7O_tzv4oXjC?usp=sharing) or [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blW231MH2krnmLq5kkQ))
194
+
195
+
196
+ ```
197
+ python tools/test.py \
198
+ --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml \
199
+ TEST.MODEL_FILE models/pytorch/pose_mpii/pose_hrnet_w32_256x256.pth
200
+ ```
201
+
202
+ #### Training on MPII dataset
203
+
204
+ ```
205
+ python tools/train.py \
206
+ --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml
207
+ ```
208
+
209
+ #### Testing on COCO val2017 dataset using model zoo's models([GoogleDrive](https://drive.google.com/drive/folders/1hOTihvbyIxsm5ygDpbUuJ7O_tzv4oXjC?usp=sharing) or [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blW231MH2krnmLq5kkQ))
210
+
211
+
212
+ ```
213
+ python tools/test.py \
214
+ --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
215
+ TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth \
216
+ TEST.USE_GT_BBOX False
217
+ ```
218
+
219
+ #### Training on COCO train2017 dataset
220
+
221
+ ```
222
+ python tools/train.py \
223
+ --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
224
+ ```
225
+
226
+ ### Visualization
227
+
228
+ #### Visualizing predictions on COCO val
229
+
230
+ ```
231
+ python visualization/plot_coco.py \
232
+ --prediction output/coco/w48_384x288_adam_lr1e-3/results/keypoints_val2017_results_0.json \
233
+ --save-path visualization/results
234
+
235
+ ```
236
+
237
+
238
+ <img src="figures\visualization\coco\score_610_id_2685_000000002685.png" height="215"><img src="figures\visualization\coco\score_710_id_153229_000000153229.png" height="215"><img src="figures\visualization\coco\score_755_id_343561_000000343561.png" height="215">
239
+
240
+ <img src="figures\visualization\coco\score_755_id_559842_000000559842.png" height="209"><img src="figures\visualization\coco\score_770_id_6954_000000006954.png" height="209"><img src="figures\visualization\coco\score_919_id_53626_000000053626.png" height="209">
241
+
242
+ ### Other applications
243
+ Many other dense prediction tasks, such as segmentation, face alignment and object detection, etc. have been benefited by HRNet. More information can be found at [High-Resolution Networks](https://github.com/HRNet).
244
+
245
+ ### Other implementation
246
+ [mmpose](https://github.com/open-mmlab/mmpose) </br>
247
+ [ModelScope (中文)](https://modelscope.cn/models/damo/cv_hrnetv2w32_body-2d-keypoints_image/summary)</br>
248
+ [timm](https://huggingface.co/docs/timm/main/en/models/hrnet)
249
+
250
+
251
+ ### Citation
252
+ If you use our code or models in your research, please cite with:
253
+ ```
254
+ @inproceedings{sun2019deep,
255
+ title={Deep High-Resolution Representation Learning for Human Pose Estimation},
256
+ author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
257
+ booktitle={CVPR},
258
+ year={2019}
259
+ }
260
+
261
+ @inproceedings{xiao2018simple,
262
+ author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
263
+ title={Simple Baselines for Human Pose Estimation and Tracking},
264
+ booktitle = {European Conference on Computer Vision (ECCV)},
265
+ year = {2018}
266
+ }
267
+
268
+ @article{WangSCJDZLMTWLX19,
269
+ title={Deep High-Resolution Representation Learning for Visual Recognition},
270
+ author={Jingdong Wang and Ke Sun and Tianheng Cheng and
271
+ Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
272
+ Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
273
+ journal = {TPAMI}
274
+ year={2019}
275
+ }
276
+ ```
deep-high-resolution-net.pytorch/_config.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ theme: jekyll-theme-cayman
deep-high-resolution-net.pytorch/data/mpii/annot/.amlignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
deep-high-resolution-net.pytorch/data/mpii/annot/.amlignore.amltmp ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
deep-high-resolution-net.pytorch/data/mpii/annot/all_poses.json ADDED
The diff for this file is too large to render. See raw diff
 
deep-high-resolution-net.pytorch/data/mpii/annot/gt_valid.mat ADDED
Binary file (262 kB). View file
 
deep-high-resolution-net.pytorch/data/mpii/annot/gt_valid_old.mat ADDED
Binary file (68.7 kB). View file
 
deep-high-resolution-net.pytorch/data/mpii/annot/pose_train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [{"center": [216.495849609375, 115.42289733886719], "scale": 0.4342059326171875, "joints": [[238.20614624023438, 158.84349060058594], [240.68731689453125, 130.30995178222656], [248.13084411621094, 100.53583526611328], [246.8902587890625, 100.53583526611328], [238.20614624023438, 129.06936645507812], [235.72496032714844, 158.84349060058594], [245.64967346191406, 99.29524230957031], [219.59732055664062, 79.44583129882812], [214.6349639892578, 78.20524597167969], [203.4696807861328, 72.00230407714844], [186.1014404296875, 103.01701354980469], [200.98849487304688, 89.37053680419922], [218.3567352294922, 75.72406768798828], [215.87554931640625, 76.96465301513672], [200.98849487304688, 89.37053680419922], [184.86085510253906, 100.53583526611328]], "image": "03_2_00010016.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [212.0, 131.0], "scale": 0.25, "joints": [[196, 106], [214, 127], [228, 154], [228, 154], [214, 127], [196, 106], [227, 156], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1]], "image": "01_19_00031809.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]}, {"center": [194.73058319091797, 126.30073165893555], "scale": 0.4997070693969727, "joints": [[213.70680236816406, 176.2714385986328], [221.2972869873047, 145.90948486328125], [227.62269592285156, 116.8126220703125], [227.62269592285156, 116.8126220703125], [221.2972869873047, 144.6444091796875], [213.70680236816406, 176.2714385986328], [226.3576202392578, 115.54753875732422], [201.05599975585938, 91.51099395751953], [197.26075744628906, 88.9808349609375], [192.20042419433594, 76.33002471923828], [161.83847045898438, 106.69197082519531], [182.07977294921875, 99.10148620605469], [202.32107543945312, 90.24591827392578], [201.05599975585938, 90.24591827392578], [182.07977294921875, 101.63164520263672], [161.83847045898438, 106.69197082519531]], "image": "01_1_00007378.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [219.5, 92.0], "scale": 0.18, "joints": [[178, 88], [207, 77], [210, 110], [210, 110], [207, 77], [178, 88], [211, 105], [243, 108], [246, 105], [261, 92], [252, 74], [247, 86], [249, 107], [249, 107], [247, 86], [252, 74]], "image": "04_88_00150899.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [231.0, 105.5], "scale": 0.315, "joints": [[183, 137], [189, 103], [215, 117], [215, 117], [189, 103], [183, 137], [210, 114], [250, 98], [253, 96], [267, 80], [279, 74], [267, 82], [256, 99], [256, 99], [267, 82], [279, 74]], "image": "04_88_00150897.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [249.0, 121.0], "scale": 0.23, "joints": [[211, 98], [236, 110], [232, 142], [232, 142], [236, 110], [211, 98], [235, 138], [267, 142], [268, 139], [287, 134], [271, 113], [263, 133], [270, 144], [270, 144], [263, 133], [271, 113]], "image": "04_88_00150931.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [206.5, 114.0], "scale": 0.61, "joints": [[198, 175], [214, 152], [210, 122], [210, 122], [214, 152], [198, 175], [216, 124], [208, 92], [206, 88], [199, 74], [197, 53], [209, 65], [205, 85], [205, 85], [209, 65], [197, 53]], "image": "04_98_00166143.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [229.0, 74.5], "scale": 0.185, "joints": [[253, 56], [225, 67], [254, 82], [254, 82], [225, 67], [253, 56], [249, 83], [226, 91], [223, 93], [204, 93], [239, 64], [239, 81], [227, 90], [227, 90], [239, 81], [239, 64]], "image": "04_98_00166163.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [222.5, 128.5], "scale": 0.465, "joints": [[179, 174], [181, 141], [186, 107], [185, 106], [186, 141], [181, 175], [191, 105], [223, 91], [227, 91], [244, 82], [264, 104], [246, 98], [228, 90], [228, 90], [246, 98], [264, 101]], "image": "05_1_00009167.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [245.5, 123.5], "scale": 0.495, "joints": [[203, 173], [204, 147], [211, 120], [225, 123], [211, 151], [203, 173], [219, 118], [247, 105], [251, 102], [261, 93], [266, 74], [252, 83], [247, 98], [254, 107], [269, 108], [288, 102]], "image": "05_82_00134020.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [216.0, 97.0], "scale": 0.26, "joints": [[255, 74], [239, 91], [227, 117], [220, 106], [234, 86], [251, 71], [222, 109], [194, 116], [189, 114], [177, 110], [216, 107], [211, 123], [195, 122], [192, 86], [194, 97], [189, 109]], "image": "05_82_00134035.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [242.5, 132.0], "scale": 0.23, "joints": [[303, 152], [270, 141], [239, 133], [243, 118], [272, 134], [303, 152], [240, 127], [194, 116], [204, 120], [202, 119], [187, 109], [186, 133], [197, 117], [199, 121], [189, 141], [182, 155]], "image": "06_21_00037588.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [236.0, 125.0], "scale": 0.58, "joints": [[271, 183], [254, 168], [227, 147], [247, 135], [267, 163], [281, 176], [233, 136], [222, 105], [223, 102], [221, 87], [191, 67], [197, 87], [214, 99], [235, 98], [226, 113], [198, 111]], "image": "06_21_00037591.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [244.5, 113.5], "scale": 0.285, "joints": [[297, 88], [272, 104], [249, 125], [241, 104], [261, 95], [287, 85], [247, 115], [217, 127], [216, 128], [201, 133], [239, 134], [240, 142], [217, 142], [207, 117], [193, 114], [192, 136]], "image": "06_27_00048106.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [258.0, 133.5], "scale": 0.265, "joints": [[208, 160], [209, 129], [231, 110], [240, 117], [211, 131], [208, 160], [236, 110], [269, 111], [273, 112], [287, 112], [294, 107], [285, 107], [273, 110], [271, 117], [291, 112], [308, 115]], "image": "06_27_00048094.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [249.5, 103.0], "scale": 0.27, "joints": [[296, 110], [272, 114], [247, 127], [251, 108], [272, 107], [291, 98], [244, 116], [217, 114], [214, 112], [203, 102], [238, 130], [220, 130], [211, 130], [217, 109], [219, 89], [215, 76]], "image": "06_27_00048108.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [182.0, 127.5], "scale": 0.575, "joints": [[246, 185], [246, 151], [227, 115], [227, 115], [246, 151], [246, 185], [229, 111], [179, 88], [172, 91], [150, 96], [118, 70], [144, 71], [171, 85], [171, 100], [142, 100], [119, 99]], "image": "07_97_00141972.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [204.0, 159.5], "scale": 0.365, "joints": [[163, 134], [193, 126], [228, 123], [228, 123], [193, 126], [163, 134], [226, 124], [239, 154], [242, 156], [245, 165], [235, 196], [235, 178], [241, 161], [238, 161], [232, 171], [229, 185]], "image": "09_14_00027838.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [215.5, 166.0], "scale": 0.62, "joints": [[192, 104], [204, 124], [220, 152], [220, 152], [204, 124], [192, 104], [219, 157], [235, 190], [235, 193], [239, 199], [235, 228], [234, 213], [234, 198], [234, 198], [234, 213], [235, 228]], "image": "09_14_00027843.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [207.5, 163.5], "scale": 0.495, "joints": [[167, 114], [193, 121], [225, 136], [225, 136], [193, 121], [167, 114], [225, 143], [239, 172], [239, 175], [248, 188], [241, 213], [239, 197], [241, 179], [241, 179], [239, 197], [236, 206]], "image": "09_14_00027840.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [187.5, 118.5], "scale": 0.185, "joints": [[129, 100], [146, 113], [192, 137], [192, 137], [146, 113], [129, 100], [192, 133], [234, 132], [233, 129], [246, 114], [183, 118], [204, 121], [230, 130], [230, 130], [204, 121], [183, 118]], "image": "09_36_00058402.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [198.5, 146.5], "scale": 0.355, "joints": [[141, 111], [163, 130], [195, 151], [195, 151], [163, 130], [141, 111], [198, 149], [236, 172], [243, 174], [256, 182], [236, 154], [238, 157], [241, 167], [238, 174], [236, 165], [234, 155]], "image": "09_36_00058407.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [197.0, 149.5], "scale": 0.765, "joints": [[170, 73], [186, 101], [215, 131], [208, 136], [191, 102], [170, 73], [215, 141], [224, 171], [222, 179], [214, 197], [219, 226], [218, 206], [218, 178], [218, 178], [218, 206], [219, 226]], "image": "09_36_00058420.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [210.0, 133.0], "scale": 0.73, "joints": [[237, 198], [226, 170], [229, 131], [225, 132], [202, 165], [183, 193], [224, 132], [222, 85], [221, 86], [217, 60], [216, 130], [219, 109], [225, 83], [225, 83], [218, 206], [216, 130]], "image": "09_54_00082209.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [221.5, 132.0], "scale": 0.7, "joints": [[264, 194], [238, 167], [228, 135], [218, 133], [197, 163], [179, 202], [222, 131], [220, 91], [223, 80], [214, 62], [222, 93], [223, 89], [224, 84], [224, 84], [223, 89], [222, 93]], "image": "09_54_00082214.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [242.5, 88.5], "scale": 0.215, "joints": [[267, 62], [242, 85], [218, 108], [218, 108], [242, 85], [267, 67], [220, 110], [252, 107], [258, 103], [260, 89], [240, 81], [233, 90], [252, 99], [252, 99], [233, 90], [240, 81]], "image": "09_54_00082243.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [226.5, 111.0], "scale": 0.32, "joints": [[199, 79], [212, 111], [226, 143], [226, 143], [212, 111], [199, 79], [233, 142], [253, 119], [254, 114], [247, 99], [214, 116], [233, 114], [252, 116], [251, 118], [229, 123], [213, 121]], "image": "09_54_00082258.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [190.5, 131.0], "scale": 0.66, "joints": [[204, 197], [190, 166], [204, 136], [213, 136], [190, 166], [232, 183], [206, 134], [198, 94], [196, 86], [187, 65], [151, 109], [171, 108], [194, 93], [192, 89], [170, 101], [149, 107]], "image": "09_59_00090003.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [186.5, 132.0], "scale": 0.65, "joints": [[212, 197], [187, 168], [207, 140], [207, 140], [187, 168], [219, 188], [206, 135], [193, 96], [192, 86], [186, 67], [154, 109], [170, 105], [191, 93], [191, 93], [170, 105], [154, 109]], "image": "09_59_00090004.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [191.5, 104.0], "scale": 0.74, "joints": [[192, 138], [168, 112], [198, 104], [210, 104], [210, 143], [215, 178], [205, 99], [208, 58], [208, 50], [204, 30], [188, 54], [195, 54], [205, 53], [205, 53], [193, 54], [179, 49]], "image": "09_59_00090015.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [195.0, 109.5], "scale": 0.845, "joints": [[201, 138], [176, 114], [202, 97], [211, 97], [212, 142], [210, 194], [209, 93], [214, 53], [214, 45], [208, 25], [194, 40], [200, 43], [211, 45], [211, 45], [199, 46], [183, 40]], "image": "09_59_00090016.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [207.5, 108.0], "scale": 0.74, "joints": [[210, 182], [212, 140], [219, 105], [219, 105], [212, 140], [210, 182], [218, 101], [222, 62], [222, 54], [217, 34], [193, 37], [202, 46], [219, 56], [219, 56], [202, 46], [201, 37]], "image": "09_59_00090021.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [199.5, 139.0], "scale": 0.19, "joints": [[229, 158], [197, 146], [225, 130], [225, 130], [197, 146], [229, 158], [222, 127], [188, 120], [182, 122], [170, 128], [198, 147], [199, 132], [188, 121], [188, 121], [199, 132], [198, 147]], "image": "09_59_00090044.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [203.0, 145.5], "scale": 0.165, "joints": [[236, 150], [208, 147], [219, 130], [219, 130], [196, 154], [230, 162], [216, 129], [181, 134], [179, 137], [170, 146], [200, 159], [197, 141], [184, 133], [184, 133], [197, 141], [200, 159]], "image": "09_59_00090055.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [192.5, 131.5], "scale": 0.445, "joints": [[130, 87], [157, 112], [198, 103], [198, 103], [157, 112], [130, 87], [201, 108], [235, 134], [240, 134], [255, 138], [251, 176], [242, 159], [234, 136], [234, 136], [242, 159], [251, 176]], "image": "09_61_00092503.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [205.0, 128.0], "scale": 0.27, "joints": [[177, 107], [196, 137], [214, 101], [214, 101], [196, 137], [177, 107], [219, 105], [232, 135], [232, 144], [229, 155], [199, 138], [215, 135], [233, 138], [233, 138], [215, 135], [199, 138]], "image": "09_61_00092516.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [190.0, 152.0], "scale": 0.22, "joints": [[155, 161], [182, 169], [177, 131], [177, 131], [182, 169], [155, 161], [184, 130], [213, 151], [218, 155], [225, 166], [188, 174], [196, 157], [216, 155], [216, 155], [196, 157], [188, 174]], "image": "09_61_00092527.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [177.0, 125.0], "scale": 0.26, "joints": [[142, 141], [178, 142], [177, 101], [177, 101], [178, 142], [142, 141], [177, 99], [207, 129], [207, 136], [212, 151], [165, 138], [191, 139], [202, 133], [202, 133], [191, 139], [165, 138]], "image": "09_62_00093793.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [174.5, 131.0], "scale": 0.3, "joints": [[150, 109], [175, 129], [190, 101], [190, 101], [175, 129], [150, 109], [196, 102], [198, 135], [199, 142], [197, 161], [165, 124], [179, 131], [194, 139], [194, 139], [179, 131], [165, 124]], "image": "09_62_00093794.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [227.0, 140.0], "scale": 0.56, "joints": [[180, 194], [191, 162], [218, 145], [229, 145], [196, 165], [184, 196], [228, 141], [253, 114], [258, 110], [268, 101], [270, 85], [257, 84], [261, 109], [261, 109], [257, 84], [270, 85]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25591.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [239.0, 148.0], "scale": 0.46, "joints": [[177, 189], [192, 159], [218, 138], [229, 141], [200, 161], [183, 194], [228, 137], [263, 121], [266, 120], [277, 114], [293, 102], [277, 103], [263, 115], [266, 126], [283, 115], [295, 103]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25592.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [242.5, 154.5], "scale": 0.335, "joints": [[180, 184], [190, 149], [219, 129], [233, 137], [198, 153], [181, 188], [227, 129], [271, 130], [275, 131], [286, 140], [304, 135], [292, 121], [272, 125], [265, 136], [287, 135], [301, 132]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25593.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [231.5, 149.5], "scale": 0.305, "joints": [[176, 115], [208, 120], [244, 119], [236, 141], [211, 131], [175, 128], [247, 134], [265, 156], [269, 161], [272, 172], [280, 180], [288, 163], [279, 151], [254, 166], [240, 158], [255, 160]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25597.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [248.0, 130.0], "scale": 0.6, "joints": [[253, 70], [247, 100], [246, 137], [267, 132], [259, 104], [253, 70], [256, 141], [246, 172], [242, 176], [234, 190], [238, 140], [229, 148], [229, 165], [251, 176], [249, 166], [242, 158]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25600.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [237.0, 114.0], "scale": 0.3, "joints": [[208, 144], [228, 122], [251, 92], [238, 84], [226, 115], [205, 139], [248, 96], [265, 117], [267, 121], [269, 131], [233, 119], [251, 118], [266, 123], [266, 123], [251, 118], [233, 119]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25617.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [222.5, 111.5], "scale": 0.285, "joints": [[191, 117], [222, 107], [258, 94], [254, 83], [222, 100], [187, 114], [258, 99], [253, 125], [252, 132], [241, 140], [229, 112], [246, 119], [254, 128], [254, 128], [246, 119], [229, 112]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25618.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [204.5, 111.5], "scale": 0.635, "joints": [[232, 49], [243, 82], [216, 116], [203, 108], [231, 80], [219, 48], [214, 117], [183, 137], [177, 143], [166, 149], [166, 175], [172, 154], [176, 136], [176, 136], [172, 154], [166, 175]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17649.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [219.0, 133.0], "scale": 0.45, "joints": [[271, 178], [247, 148], [224, 127], [230, 110], [256, 140], [277, 167], [221, 117], [194, 99], [190, 95], [183, 88], [161, 111], [173, 104], [189, 97], [192, 93], [183, 106], [175, 114]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17659.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [238.0, 140.5], "scale": 0.615, "joints": [[215, 75], [230, 111], [240, 140], [220, 149], [230, 118], [232, 79], [236, 147], [245, 182], [245, 187], [250, 195], [249, 155], [252, 163], [253, 177], [236, 189], [240, 201], [256, 202]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17673.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [252.5, 162.0], "scale": 0.29, "joints": [[303, 143], [271, 161], [248, 187], [248, 178], [264, 155], [284, 133], [244, 181], [216, 171], [209, 166], [202, 156], [242, 191], [226, 183], [211, 170], [212, 165], [215, 159], [223, 153]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17680.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [175.5, 121.0], "scale": 0.84, "joints": [[180, 37], [175, 74], [172, 111], [172, 111], [175, 74], [180, 37], [176, 121], [173, 151], [173, 160], [173, 174], [172, 205], [172, 191], [171, 162], [171, 162], [172, 191], [172, 205]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03079.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [175.0, 130.5], "scale": 0.675, "joints": [[177, 63], [204, 89], [183, 123], [183, 123], [204, 89], [177, 63], [180, 132], [162, 156], [154, 163], [146, 171], [157, 198], [155, 176], [156, 160], [156, 160], [155, 176], [157, 198]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03095.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [177.5, 139.5], "scale": 0.605, "joints": [[177, 79], [209, 97], [186, 130], [186, 130], [209, 97], [177, 79], [181, 139], [164, 158], [154, 163], [146, 172], [156, 200], [156, 181], [155, 162], [155, 162], [156, 181], [156, 200]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03097.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [185.0, 162.0], "scale": 0.49, "joints": [[206, 105], [204, 141], [206, 168], [192, 165], [195, 143], [199, 113], [199, 164], [194, 191], [192, 200], [186, 210], [198, 174], [206, 190], [200, 203], [181, 199], [167, 194], [164, 211]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03124.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [187.5, 157.0], "scale": 0.46, "joints": [[219, 110], [212, 142], [208, 172], [204, 171], [207, 143], [216, 111], [204, 174], [187, 191], [181, 197], [172, 203], [156, 178], [171, 179], [186, 192], [186, 192], [171, 179], [156, 178]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03125.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [186.5, 153.5], "scale": 0.455, "joints": [[216, 108], [210, 141], [206, 173], [206, 173], [210, 141], [216, 108], [203, 175], [188, 190], [183, 195], [170, 199], [179, 195], [194, 198], [187, 195], [180, 185], [169, 178], [157, 178]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03126.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [164.0, 170.5], "scale": 0.785, "joints": [[188, 249], [170, 223], [147, 185], [170, 178], [180, 214], [188, 249], [156, 179], [157, 141], [159, 133], [160, 120], [151, 92], [140, 111], [147, 126], [171, 134], [172, 115], [164, 102]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_7_14440.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]},
2
+
3
+ ]
deep-high-resolution-net.pytorch/data/mpii/annot/pose_train.json.amltmp ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [{"center": [216.495849609375, 115.42289733886719], "scale": 0.4342059326171875, "joints": [[238.20614624023438, 158.84349060058594], [240.68731689453125, 130.30995178222656], [248.13084411621094, 100.53583526611328], [246.8902587890625, 100.53583526611328], [238.20614624023438, 129.06936645507812], [235.72496032714844, 158.84349060058594], [245.64967346191406, 99.29524230957031], [219.59732055664062, 79.44583129882812], [214.6349639892578, 78.20524597167969], [203.4696807861328, 72.00230407714844], [186.1014404296875, 103.01701354980469], [200.98849487304688, 89.37053680419922], [218.3567352294922, 75.72406768798828], [215.87554931640625, 76.96465301513672], [200.98849487304688, 89.37053680419922], [184.86085510253906, 100.53583526611328]], "image": "03_2_00010016.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [212.0, 131.0], "scale": 0.25, "joints": [[196, 106], [214, 127], [228, 154], [228, 154], [214, 127], [196, 106], [227, 156], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1], [-1, -1]], "image": "01_19_00031809.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]}, {"center": [194.73058319091797, 126.30073165893555], "scale": 0.4997070693969727, "joints": [[213.70680236816406, 176.2714385986328], [221.2972869873047, 145.90948486328125], [227.62269592285156, 116.8126220703125], [227.62269592285156, 116.8126220703125], [221.2972869873047, 144.6444091796875], [213.70680236816406, 176.2714385986328], [226.3576202392578, 115.54753875732422], [201.05599975585938, 91.51099395751953], [197.26075744628906, 88.9808349609375], [192.20042419433594, 76.33002471923828], [161.83847045898438, 106.69197082519531], [182.07977294921875, 99.10148620605469], [202.32107543945312, 90.24591827392578], [201.05599975585938, 90.24591827392578], [182.07977294921875, 101.63164520263672], [161.83847045898438, 106.69197082519531]], "image": "01_1_00007378.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [219.5, 92.0], "scale": 0.18, "joints": [[178, 88], [207, 77], [210, 110], [210, 110], [207, 77], [178, 88], [211, 105], [243, 108], [246, 105], [261, 92], [252, 74], [247, 86], [249, 107], [249, 107], [247, 86], [252, 74]], "image": "04_88_00150899.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [231.0, 105.5], "scale": 0.315, "joints": [[183, 137], [189, 103], [215, 117], [215, 117], [189, 103], [183, 137], [210, 114], [250, 98], [253, 96], [267, 80], [279, 74], [267, 82], [256, 99], [256, 99], [267, 82], [279, 74]], "image": "04_88_00150897.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [249.0, 121.0], "scale": 0.23, "joints": [[211, 98], [236, 110], [232, 142], [232, 142], [236, 110], [211, 98], [235, 138], [267, 142], [268, 139], [287, 134], [271, 113], [263, 133], [270, 144], [270, 144], [263, 133], [271, 113]], "image": "04_88_00150931.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [206.5, 114.0], "scale": 0.61, "joints": [[198, 175], [214, 152], [210, 122], [210, 122], [214, 152], [198, 175], [216, 124], [208, 92], [206, 88], [199, 74], [197, 53], [209, 65], [205, 85], [205, 85], [209, 65], [197, 53]], "image": "04_98_00166143.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [229.0, 74.5], "scale": 0.185, "joints": [[253, 56], [225, 67], [254, 82], [254, 82], [225, 67], [253, 56], [249, 83], [226, 91], [223, 93], [204, 93], [239, 64], [239, 81], [227, 90], [227, 90], [239, 81], [239, 64]], "image": "04_98_00166163.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [222.5, 128.5], "scale": 0.465, "joints": [[179, 174], [181, 141], [186, 107], [185, 106], [186, 141], [181, 175], [191, 105], [223, 91], [227, 91], [244, 82], [264, 104], [246, 98], [228, 90], [228, 90], [246, 98], [264, 101]], "image": "05_1_00009167.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [245.5, 123.5], "scale": 0.495, "joints": [[203, 173], [204, 147], [211, 120], [225, 123], [211, 151], [203, 173], [219, 118], [247, 105], [251, 102], [261, 93], [266, 74], [252, 83], [247, 98], [254, 107], [269, 108], [288, 102]], "image": "05_82_00134020.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [216.0, 97.0], "scale": 0.26, "joints": [[255, 74], [239, 91], [227, 117], [220, 106], [234, 86], [251, 71], [222, 109], [194, 116], [189, 114], [177, 110], [216, 107], [211, 123], [195, 122], [192, 86], [194, 97], [189, 109]], "image": "05_82_00134035.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [242.5, 132.0], "scale": 0.23, "joints": [[303, 152], [270, 141], [239, 133], [243, 118], [272, 134], [303, 152], [240, 127], [194, 116], [204, 120], [202, 119], [187, 109], [186, 133], [197, 117], [199, 121], [189, 141], [182, 155]], "image": "06_21_00037588.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [236.0, 125.0], "scale": 0.58, "joints": [[271, 183], [254, 168], [227, 147], [247, 135], [267, 163], [281, 176], [233, 136], [222, 105], [223, 102], [221, 87], [191, 67], [197, 87], [214, 99], [235, 98], [226, 113], [198, 111]], "image": "06_21_00037591.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [244.5, 113.5], "scale": 0.285, "joints": [[297, 88], [272, 104], [249, 125], [241, 104], [261, 95], [287, 85], [247, 115], [217, 127], [216, 128], [201, 133], [239, 134], [240, 142], [217, 142], [207, 117], [193, 114], [192, 136]], "image": "06_27_00048106.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [258.0, 133.5], "scale": 0.265, "joints": [[208, 160], [209, 129], [231, 110], [240, 117], [211, 131], [208, 160], [236, 110], [269, 111], [273, 112], [287, 112], [294, 107], [285, 107], [273, 110], [271, 117], [291, 112], [308, 115]], "image": "06_27_00048094.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [249.5, 103.0], "scale": 0.27, "joints": [[296, 110], [272, 114], [247, 127], [251, 108], [272, 107], [291, 98], [244, 116], [217, 114], [214, 112], [203, 102], [238, 130], [220, 130], [211, 130], [217, 109], [219, 89], [215, 76]], "image": "06_27_00048108.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [182.0, 127.5], "scale": 0.575, "joints": [[246, 185], [246, 151], [227, 115], [227, 115], [246, 151], [246, 185], [229, 111], [179, 88], [172, 91], [150, 96], [118, 70], [144, 71], [171, 85], [171, 100], [142, 100], [119, 99]], "image": "07_97_00141972.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [204.0, 159.5], "scale": 0.365, "joints": [[163, 134], [193, 126], [228, 123], [228, 123], [193, 126], [163, 134], [226, 124], [239, 154], [242, 156], [245, 165], [235, 196], [235, 178], [241, 161], [238, 161], [232, 171], [229, 185]], "image": "09_14_00027838.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [215.5, 166.0], "scale": 0.62, "joints": [[192, 104], [204, 124], [220, 152], [220, 152], [204, 124], [192, 104], [219, 157], [235, 190], [235, 193], [239, 199], [235, 228], [234, 213], [234, 198], [234, 198], [234, 213], [235, 228]], "image": "09_14_00027843.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [207.5, 163.5], "scale": 0.495, "joints": [[167, 114], [193, 121], [225, 136], [225, 136], [193, 121], [167, 114], [225, 143], [239, 172], [239, 175], [248, 188], [241, 213], [239, 197], [241, 179], [241, 179], [239, 197], [236, 206]], "image": "09_14_00027840.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [187.5, 118.5], "scale": 0.185, "joints": [[129, 100], [146, 113], [192, 137], [192, 137], [146, 113], [129, 100], [192, 133], [234, 132], [233, 129], [246, 114], [183, 118], [204, 121], [230, 130], [230, 130], [204, 121], [183, 118]], "image": "09_36_00058402.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [198.5, 146.5], "scale": 0.355, "joints": [[141, 111], [163, 130], [195, 151], [195, 151], [163, 130], [141, 111], [198, 149], [236, 172], [243, 174], [256, 182], [236, 154], [238, 157], [241, 167], [238, 174], [236, 165], [234, 155]], "image": "09_36_00058407.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [197.0, 149.5], "scale": 0.765, "joints": [[170, 73], [186, 101], [215, 131], [208, 136], [191, 102], [170, 73], [215, 141], [224, 171], [222, 179], [214, 197], [219, 226], [218, 206], [218, 178], [218, 178], [218, 206], [219, 226]], "image": "09_36_00058420.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [210.0, 133.0], "scale": 0.73, "joints": [[237, 198], [226, 170], [229, 131], [225, 132], [202, 165], [183, 193], [224, 132], [222, 85], [221, 86], [217, 60], [216, 130], [219, 109], [225, 83], [225, 83], [218, 206], [216, 130]], "image": "09_54_00082209.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [221.5, 132.0], "scale": 0.7, "joints": [[264, 194], [238, 167], [228, 135], [218, 133], [197, 163], [179, 202], [222, 131], [220, 91], [223, 80], [214, 62], [222, 93], [223, 89], [224, 84], [224, 84], [223, 89], [222, 93]], "image": "09_54_00082214.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [242.5, 88.5], "scale": 0.215, "joints": [[267, 62], [242, 85], [218, 108], [218, 108], [242, 85], [267, 67], [220, 110], [252, 107], [258, 103], [260, 89], [240, 81], [233, 90], [252, 99], [252, 99], [233, 90], [240, 81]], "image": "09_54_00082243.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [226.5, 111.0], "scale": 0.32, "joints": [[199, 79], [212, 111], [226, 143], [226, 143], [212, 111], [199, 79], [233, 142], [253, 119], [254, 114], [247, 99], [214, 116], [233, 114], [252, 116], [251, 118], [229, 123], [213, 121]], "image": "09_54_00082258.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [190.5, 131.0], "scale": 0.66, "joints": [[204, 197], [190, 166], [204, 136], [213, 136], [190, 166], [232, 183], [206, 134], [198, 94], [196, 86], [187, 65], [151, 109], [171, 108], [194, 93], [192, 89], [170, 101], [149, 107]], "image": "09_59_00090003.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [186.5, 132.0], "scale": 0.65, "joints": [[212, 197], [187, 168], [207, 140], [207, 140], [187, 168], [219, 188], [206, 135], [193, 96], [192, 86], [186, 67], [154, 109], [170, 105], [191, 93], [191, 93], [170, 105], [154, 109]], "image": "09_59_00090004.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [191.5, 104.0], "scale": 0.74, "joints": [[192, 138], [168, 112], [198, 104], [210, 104], [210, 143], [215, 178], [205, 99], [208, 58], [208, 50], [204, 30], [188, 54], [195, 54], [205, 53], [205, 53], [193, 54], [179, 49]], "image": "09_59_00090015.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [195.0, 109.5], "scale": 0.845, "joints": [[201, 138], [176, 114], [202, 97], [211, 97], [212, 142], [210, 194], [209, 93], [214, 53], [214, 45], [208, 25], [194, 40], [200, 43], [211, 45], [211, 45], [199, 46], [183, 40]], "image": "09_59_00090016.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [207.5, 108.0], "scale": 0.74, "joints": [[210, 182], [212, 140], [219, 105], [219, 105], [212, 140], [210, 182], [218, 101], [222, 62], [222, 54], [217, 34], [193, 37], [202, 46], [219, 56], [219, 56], [202, 46], [201, 37]], "image": "09_59_00090021.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [199.5, 139.0], "scale": 0.19, "joints": [[229, 158], [197, 146], [225, 130], [225, 130], [197, 146], [229, 158], [222, 127], [188, 120], [182, 122], [170, 128], [198, 147], [199, 132], [188, 121], [188, 121], [199, 132], [198, 147]], "image": "09_59_00090044.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [203.0, 145.5], "scale": 0.165, "joints": [[236, 150], [208, 147], [219, 130], [219, 130], [196, 154], [230, 162], [216, 129], [181, 134], [179, 137], [170, 146], [200, 159], [197, 141], [184, 133], [184, 133], [197, 141], [200, 159]], "image": "09_59_00090055.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [192.5, 131.5], "scale": 0.445, "joints": [[130, 87], [157, 112], [198, 103], [198, 103], [157, 112], [130, 87], [201, 108], [235, 134], [240, 134], [255, 138], [251, 176], [242, 159], [234, 136], [234, 136], [242, 159], [251, 176]], "image": "09_61_00092503.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [205.0, 128.0], "scale": 0.27, "joints": [[177, 107], [196, 137], [214, 101], [214, 101], [196, 137], [177, 107], [219, 105], [232, 135], [232, 144], [229, 155], [199, 138], [215, 135], [233, 138], [233, 138], [215, 135], [199, 138]], "image": "09_61_00092516.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [190.0, 152.0], "scale": 0.22, "joints": [[155, 161], [182, 169], [177, 131], [177, 131], [182, 169], [155, 161], [184, 130], [213, 151], [218, 155], [225, 166], [188, 174], [196, 157], [216, 155], [216, 155], [196, 157], [188, 174]], "image": "09_61_00092527.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [177.0, 125.0], "scale": 0.26, "joints": [[142, 141], [178, 142], [177, 101], [177, 101], [178, 142], [142, 141], [177, 99], [207, 129], [207, 136], [212, 151], [165, 138], [191, 139], [202, 133], [202, 133], [191, 139], [165, 138]], "image": "09_62_00093793.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [174.5, 131.0], "scale": 0.3, "joints": [[150, 109], [175, 129], [190, 101], [190, 101], [175, 129], [150, 109], [196, 102], [198, 135], [199, 142], [197, 161], [165, 124], [179, 131], [194, 139], [194, 139], [179, 131], [165, 124]], "image": "09_62_00093794.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [227.0, 140.0], "scale": 0.56, "joints": [[180, 194], [191, 162], [218, 145], [229, 145], [196, 165], [184, 196], [228, 141], [253, 114], [258, 110], [268, 101], [270, 85], [257, 84], [261, 109], [261, 109], [257, 84], [270, 85]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25591.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [239.0, 148.0], "scale": 0.46, "joints": [[177, 189], [192, 159], [218, 138], [229, 141], [200, 161], [183, 194], [228, 137], [263, 121], [266, 120], [277, 114], [293, 102], [277, 103], [263, 115], [266, 126], [283, 115], [295, 103]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25592.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [242.5, 154.5], "scale": 0.335, "joints": [[180, 184], [190, 149], [219, 129], [233, 137], [198, 153], [181, 188], [227, 129], [271, 130], [275, 131], [286, 140], [304, 135], [292, 121], [272, 125], [265, 136], [287, 135], [301, 132]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25593.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [231.5, 149.5], "scale": 0.305, "joints": [[176, 115], [208, 120], [244, 119], [236, 141], [211, 131], [175, 128], [247, 134], [265, 156], [269, 161], [272, 172], [280, 180], [288, 163], [279, 151], [254, 166], [240, 158], [255, 160]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25597.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [248.0, 130.0], "scale": 0.6, "joints": [[253, 70], [247, 100], [246, 137], [267, 132], [259, 104], [253, 70], [256, 141], [246, 172], [242, 176], [234, 190], [238, 140], [229, 148], [229, 165], [251, 176], [249, 166], [242, 158]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25600.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [237.0, 114.0], "scale": 0.3, "joints": [[208, 144], [228, 122], [251, 92], [238, 84], [226, 115], [205, 139], [248, 96], [265, 117], [267, 121], [269, 131], [233, 119], [251, 118], [266, 123], [266, 123], [251, 118], [233, 119]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25617.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [222.5, 111.5], "scale": 0.285, "joints": [[191, 117], [222, 107], [258, 94], [254, 83], [222, 100], [187, 114], [258, 99], [253, 125], [252, 132], [241, 140], [229, 112], [246, 119], [254, 128], [254, 128], [246, 119], [229, 112]], "image": "Budapest2021Diving10mPlatformWomenFinal_1_15_25618.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [204.5, 111.5], "scale": 0.635, "joints": [[232, 49], [243, 82], [216, 116], [203, 108], [231, 80], [219, 48], [214, 117], [183, 137], [177, 143], [166, 149], [166, 175], [172, 154], [176, 136], [176, 136], [172, 154], [166, 175]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17649.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [219.0, 133.0], "scale": 0.45, "joints": [[271, 178], [247, 148], [224, 127], [230, 110], [256, 140], [277, 167], [221, 117], [194, 99], [190, 95], [183, 88], [161, 111], [173, 104], [189, 97], [192, 93], [183, 106], [175, 114]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17659.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [238.0, 140.5], "scale": 0.615, "joints": [[215, 75], [230, 111], [240, 140], [220, 149], [230, 118], [232, 79], [236, 147], [245, 182], [245, 187], [250, 195], [249, 155], [252, 163], [253, 177], [236, 189], [240, 201], [256, 202]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17673.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [252.5, 162.0], "scale": 0.29, "joints": [[303, 143], [271, 161], [248, 187], [248, 178], [264, 155], [284, 133], [244, 181], [216, 171], [209, 166], [202, 156], [242, 191], [226, 183], [211, 170], [212, 165], [215, 159], [223, 153]], "image": "Budapest2021Diving10mPlatformWomenFinal_2_9_17680.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [175.5, 121.0], "scale": 0.84, "joints": [[180, 37], [175, 74], [172, 111], [172, 111], [175, 74], [180, 37], [176, 121], [173, 151], [173, 160], [173, 174], [172, 205], [172, 191], [171, 162], [171, 162], [172, 191], [172, 205]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03079.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [175.0, 130.5], "scale": 0.675, "joints": [[177, 63], [204, 89], [183, 123], [183, 123], [204, 89], [177, 63], [180, 132], [162, 156], [154, 163], [146, 171], [157, 198], [155, 176], [156, 160], [156, 160], [155, 176], [157, 198]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03095.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [177.5, 139.5], "scale": 0.605, "joints": [[177, 79], [209, 97], [186, 130], [186, 130], [209, 97], [177, 79], [181, 139], [164, 158], [154, 163], [146, 172], [156, 200], [156, 181], [155, 162], [155, 162], [156, 181], [156, 200]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03097.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [185.0, 162.0], "scale": 0.49, "joints": [[206, 105], [204, 141], [206, 168], [192, 165], [195, 143], [199, 113], [199, 164], [194, 191], [192, 200], [186, 210], [198, 174], [206, 190], [200, 203], [181, 199], [167, 194], [164, 211]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03124.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [187.5, 157.0], "scale": 0.46, "joints": [[219, 110], [212, 142], [208, 172], [204, 171], [207, 143], [216, 111], [204, 174], [187, 191], [181, 197], [172, 203], [156, 178], [171, 179], [186, 192], [186, 192], [171, 179], [156, 178]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03125.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [186.5, 153.5], "scale": 0.455, "joints": [[216, 108], [210, 141], [206, 173], [206, 173], [210, 141], [216, 108], [203, 175], [188, 190], [183, 195], [170, 199], [179, 195], [194, 198], [187, 195], [180, 185], [169, 178], [157, 178]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_1_03126.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {"center": [164.0, 170.5], "scale": 0.785, "joints": [[188, 249], [170, 223], [147, 185], [170, 178], [180, 214], [188, 249], [156, 179], [157, 141], [159, 133], [160, 120], [151, 92], [140, 111], [147, 126], [171, 134], [172, 115], [164, 102]], "image": "Budapest2021Diving10mPlatformWomenFinal_3_7_14440.jpg", "joints_vis": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]},
2
+
3
+ ]
deep-high-resolution-net.pytorch/data/mpii/annot/train.json ADDED
The diff for this file is too large to render. See raw diff
 
deep-high-resolution-net.pytorch/data/mpii/annot/train.json.amltmp ADDED
The diff for this file is too large to render. See raw diff
 
deep-high-resolution-net.pytorch/data/mpii/annot/train_all.json ADDED
The diff for this file is too large to render. See raw diff
 
deep-high-resolution-net.pytorch/data/mpii/annot/train_all.json.amltmp ADDED
The diff for this file is too large to render. See raw diff
 
deep-high-resolution-net.pytorch/data/mpii/annot/valid.json ADDED
The diff for this file is too large to render. See raw diff
 
deep-high-resolution-net.pytorch/data/mpii/annot/valid_old.json ADDED
The diff for this file is too large to render. See raw diff
 
deep-high-resolution-net.pytorch/data/mpii/images/01_17_00028953.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/01_17_00028984.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/01_17_00028990.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/03_2_00010016.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/04_98_00166163.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/09_54_00082209.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/09_59_00090044.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/13_2_00005250.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/14_1_00001161.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/FINADivingWorldCup2021_Men10m_final_r6_0_01228.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/FINADivingWorldCup2021_Women10m_semifinal_r4_9_15342.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/FINAWorldChampionships2019_Women10m_final_r2_4_08105.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00027.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00033.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00219.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00225.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00231.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00543.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00557.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00580.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00594.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00741.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00755.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00769.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00782.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00796.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00966.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00972.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d00999.jpg ADDED
deep-high-resolution-net.pytorch/data/mpii/images/d01107.jpg ADDED