|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AutoModel |
|
import re |
|
from textblob import TextBlob |
|
from nltk import pos_tag, word_tokenize |
|
from nltk.corpus import stopwords |
|
import emoji |
|
import string |
|
import nltk |
|
from nltk import pos_tag |
|
from nltk.tokenize import word_tokenize |
|
from nltk.corpus import stopwords |
|
import textstat |
|
import pandas as pd |
|
from transformers import pipeline |
|
from torch.utils.data import Dataset, DataLoader |
|
import torch.nn as nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def average_word_length(tweet): |
|
words = tweet.split() |
|
return sum(len(word) for word in words) / len(words) |
|
|
|
|
|
def lexical_diversity(tweet): |
|
words = tweet.split() |
|
unique_words = set(words) |
|
return len(unique_words) / len(words) |
|
|
|
def count_capital_letters(tweet): |
|
return sum(1 for char in tweet if char.isupper()) |
|
|
|
def count_words_surrounded_by_colons(tweet): |
|
|
|
pattern = r':(\w+):' |
|
|
|
|
|
matches = re.findall(pattern, tweet) |
|
|
|
|
|
return len(matches) |
|
|
|
def count_emojis(tweet): |
|
|
|
tweet_with_names = emoji.demojize(tweet) |
|
return count_words_surrounded_by_colons(tweet_with_names) |
|
|
|
def hashtag_frequency(tweet): |
|
hashtags = re.findall(r'#\w+', tweet) |
|
return len(hashtags) |
|
|
|
def mention_frequency(tweet): |
|
mentions = re.findall(r'@\w+', tweet) |
|
return len(mentions) |
|
|
|
def count_special_characters(tweet): |
|
special_characters = [char for char in tweet if char in string.punctuation] |
|
return len(special_characters) |
|
|
|
|
|
def stop_word_frequency(tweet): |
|
stop_words = set(stopwords.words('english')) |
|
words = [word for word in tweet.split() if word.lower() in stop_words] |
|
return len(words) |
|
|
|
nltk.download('punkt') |
|
nltk.download('averaged_perceptron_tagger') |
|
nltk.download('stopwords') |
|
|
|
def get_linguistic_features(tweet): |
|
|
|
words = word_tokenize(tweet) |
|
|
|
|
|
stop_words = set(stopwords.words('english')) |
|
filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words] |
|
|
|
|
|
pos_tags = pos_tag(filtered_words) |
|
|
|
|
|
noun_count = sum(1 for word, pos in pos_tags if pos.startswith('N')) |
|
verb_count = sum(1 for word, pos in pos_tags if pos.startswith('V')) |
|
participle_count = sum(1 for word, pos in pos_tags if pos.startswith('V') and ('ing' in word or 'ed' in word)) |
|
interjection_count = sum(1 for word, pos in pos_tags if pos == 'UH') |
|
pronoun_count = sum(1 for word, pos in pos_tags if pos.startswith('PRP')) |
|
preposition_count = sum(1 for word, pos in pos_tags if pos.startswith('IN')) |
|
adverb_count = sum(1 for word, pos in pos_tags if pos.startswith('RB')) |
|
conjunction_count = sum(1 for word, pos in pos_tags if pos.startswith('CC')) |
|
|
|
return { |
|
'Noun_Count': noun_count, |
|
'Verb_Count': verb_count, |
|
'Participle_Count': participle_count, |
|
'Interjection_Count': interjection_count, |
|
'Pronoun_Count': pronoun_count, |
|
'Preposition_Count': preposition_count, |
|
'Adverb_Count': adverb_count, |
|
'Conjunction_Count': conjunction_count |
|
} |
|
|
|
def readability_score(tweet): |
|
return textstat.flesch_reading_ease(tweet) |
|
|
|
def get_url_frequency(tweet): |
|
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', tweet) |
|
return len(urls) |
|
|
|
|
|
|
|
def extract_features(tweet): |
|
features = { |
|
'Average_Word_Length': average_word_length(tweet), |
|
|
|
'Lexical_Diversity': lexical_diversity(tweet), |
|
'Capital_Letters_Count': count_capital_letters(tweet), |
|
'Hashtag_Frequency': hashtag_frequency(tweet), |
|
'Mention_Frequency': mention_frequency(tweet), |
|
'count_emojis': count_emojis(tweet), |
|
'special_chars_count': count_special_characters(tweet), |
|
'Stop_Word_Frequency': stop_word_frequency(tweet), |
|
**get_linguistic_features(tweet), |
|
'Readability_Score': readability_score(tweet), |
|
'URL_Frequency': get_url_frequency(tweet) |
|
} |
|
return features |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def personality_detection(text, threshold=0.05, endpoint= 1.0): |
|
tokenizer = AutoTokenizer.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN) |
|
model = AutoModelForSequenceClassification.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN) |
|
|
|
inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt") |
|
outputs = model(**inputs) |
|
predictions = outputs.logits.squeeze().detach().numpy() |
|
|
|
|
|
logits = model(**inputs).logits |
|
|
|
|
|
probabilities = torch.sigmoid(logits) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return [probabilities[0][0].detach().numpy() |
|
,probabilities[0][1].detach().numpy() |
|
,probabilities[0][2].detach().numpy() |
|
,probabilities[0][3].detach().numpy() |
|
,probabilities[0][4].detach().numpy()] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_emotion_score(tweet): |
|
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True ) |
|
emotions = pipe(tweet)[0] |
|
for i in emotions: |
|
print(i) |
|
|
|
return [emotions[0]['score'],emotions[1]['score'],emotions[2]['score'],emotions[3]['score'],emotions[4]['score'],emotions[5]['score'],emotions[6]['score'],emotions[7]['score'],emotions[8]['score'],emotions[9]['score'],emotions[10]['score']] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_model(tweet): |
|
|
|
|
|
|
|
model_name = "vinai/bertweet-base" |
|
PADDING_MAX_LENGTH = 45 |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
inputs = tokenizer(tweet, truncation=True, padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True, return_tensors="pt") |
|
print(inputs) |
|
emotion_list = calc_emotion_score(tweet) |
|
print(emotion_list) |
|
|
|
features_list = extract_features(tweet) |
|
for i in features_list.values(): |
|
emotion_list.append(i) |
|
print("emotion + author",emotion_list) |
|
|
|
|
|
personality_list = personality_detection(tweet) |
|
print("personality",personality_list) |
|
|
|
emotion_list.extend(personality_list) |
|
print("final list",emotion_list) |
|
|
|
inputs['emotion_author_vector'] = torch.tensor([emotion_list]) |
|
|
|
print("final inputs ",inputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class EmotionAuthorGuidedDCLModel(nn.Module): |
|
def __init__(self,dcl_model:nn.Module,dropout:float=0.5): |
|
super(EmotionAuthorGuidedDCLModel, self).__init__() |
|
self.dcl_model = dcl_model |
|
self.dim = 802 |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear = nn.Linear(self.dim, 1) |
|
|
|
for param in self.dcl_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self,batch_tokenized): |
|
input_ids = batch_tokenized['input_ids'] |
|
attention_mask = batch_tokenized['attention_mask'] |
|
emotion_vector = batch_tokenized['emotion_author_vector'] |
|
bert_output = self.dcl_model(input_ids, attention_mask=attention_mask, output_hidden_states=True) |
|
bert_cls_hidden_state = bert_output[1] |
|
combined_vector =torch.cat((bert_cls_hidden_state,emotion_vector), 1) |
|
d_combined_vector=self.dropout(combined_vector) |
|
linear_output = self.linear(d_combined_vector) |
|
pred_linear = linear_output.squeeze(1) |
|
return pred_linear |
|
|
|
|
|
checkpoint = { |
|
"model_state_dict":torch.load("./model.pt",map_location ='cpu') , |
|
} |
|
|
|
|
|
|
|
class DCLArchitecture(nn.Module): |
|
def __init__(self,dropout:float,bert_model_name:str='vinai/bertweet-base'): |
|
super(DCLArchitecture, self).__init__() |
|
self.bert = AutoModel.from_pretrained(bert_model_name) |
|
self.dim = 768 |
|
self.dense = nn.Linear(self.dim, 1) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self,batch_tokenized, if_train=False): |
|
input_ids = batch_tokenized['input_ids'] |
|
attention_mask = batch_tokenized['attention_mask'] |
|
bert_output = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True) |
|
bert_cls_hidden_state = bert_output[1] |
|
torch.cuda.empty_cache() |
|
|
|
if if_train: |
|
bert_cls_hidden_state_aug = self.dropout(bert_cls_hidden_state) |
|
bert_cls_hidden_state = torch.cat((bert_cls_hidden_state, bert_cls_hidden_state_aug), dim=1).reshape(-1, self.dim) |
|
else: |
|
bert_cls_hidden_state = self.dropout(bert_cls_hidden_state) |
|
|
|
linear_output = self.dense(bert_cls_hidden_state) |
|
linear_output = linear_output.squeeze(1) |
|
|
|
return bert_cls_hidden_state, linear_output |
|
|
|
|
|
|
|
dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=0.5) |
|
dcl_model.to(device) |
|
|
|
DROPOUT = 0.5 |
|
fined_tuned_bert_model=dcl_model.bert |
|
model = EmotionAuthorGuidedDCLModel(dcl_model=fined_tuned_bert_model,dropout=DROPOUT) |
|
model.to(device) |
|
model.load_state_dict(checkpoint["model_state_dict"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_single_text(model, inputs,device): |
|
|
|
|
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
model.eval() |
|
pred = model(inputs) |
|
|
|
pred = torch.round(torch.sigmoid(pred)).item() |
|
|
|
return pred |
|
|
|
predicted_class = predict_single_text(model, inputs, device) |
|
return predicted_class |
|
|
|
|
|
|
|
|
|
|
|
|
|
def greet(tweet): |
|
print("start") |
|
predicted_class = load_model(tweet) |
|
|
|
|
|
|
|
|
|
print("end") |
|
|
|
|
|
return str(predicted_class) |
|
|
|
demo = gr.Interface(fn=greet, inputs="text", outputs="text") |
|
demo.launch() |