File size: 14,367 Bytes
7f0eec2 861ab00 7f0eec2 861ab00 7f0eec2 861ab00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AutoModel
import re
from textblob import TextBlob
from nltk import pos_tag, word_tokenize
from nltk.corpus import stopwords
import emoji
import string
import nltk
from nltk import pos_tag
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import textstat
import pandas as pd
from transformers import pipeline
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
#Loading author details
def average_word_length(tweet):
words = tweet.split()
return sum(len(word) for word in words) / len(words)
def lexical_diversity(tweet):
words = tweet.split()
unique_words = set(words)
return len(unique_words) / len(words)
def count_capital_letters(tweet):
return sum(1 for char in tweet if char.isupper())
def count_words_surrounded_by_colons(tweet):
# Define a regular expression pattern to match words surrounded by ':'
pattern = r':(\w+):'
# Use re.findall to find all matches in the tweet
matches = re.findall(pattern, tweet)
# Return the count of matched words
return len(matches)
def count_emojis(tweet):
# Convert emoji symbols to their corresponding names
tweet_with_names = emoji.demojize(tweet)
return count_words_surrounded_by_colons(tweet_with_names)
def hashtag_frequency(tweet):
hashtags = re.findall(r'#\w+', tweet)
return len(hashtags)
def mention_frequency(tweet):
mentions = re.findall(r'@\w+', tweet)
return len(mentions)
def count_special_characters(tweet):
special_characters = [char for char in tweet if char in string.punctuation]
return len(special_characters)
def stop_word_frequency(tweet):
stop_words = set(stopwords.words('english'))
words = [word for word in tweet.split() if word.lower() in stop_words]
return len(words)
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
def get_linguistic_features(tweet):
# Tokenize the tweet
words = word_tokenize(tweet)
# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words]
# Get parts of speech tags
pos_tags = pos_tag(filtered_words)
# Count various linguistic features
noun_count = sum(1 for word, pos in pos_tags if pos.startswith('N'))
verb_count = sum(1 for word, pos in pos_tags if pos.startswith('V'))
participle_count = sum(1 for word, pos in pos_tags if pos.startswith('V') and ('ing' in word or 'ed' in word))
interjection_count = sum(1 for word, pos in pos_tags if pos == 'UH')
pronoun_count = sum(1 for word, pos in pos_tags if pos.startswith('PRP'))
preposition_count = sum(1 for word, pos in pos_tags if pos.startswith('IN'))
adverb_count = sum(1 for word, pos in pos_tags if pos.startswith('RB'))
conjunction_count = sum(1 for word, pos in pos_tags if pos.startswith('CC'))
return {
'Noun_Count': noun_count,
'Verb_Count': verb_count,
'Participle_Count': participle_count,
'Interjection_Count': interjection_count,
'Pronoun_Count': pronoun_count,
'Preposition_Count': preposition_count,
'Adverb_Count': adverb_count,
'Conjunction_Count': conjunction_count
}
def readability_score(tweet):
return textstat.flesch_reading_ease(tweet)
def get_url_frequency(tweet):
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', tweet)
return len(urls)
# Define a function to extract features from a single tweet
def extract_features(tweet):
features = {
'Average_Word_Length': average_word_length(tweet),
# 'Average_Sentence_Length': average_sentence_length(tweet),
'Lexical_Diversity': lexical_diversity(tweet),
'Capital_Letters_Count': count_capital_letters(tweet), # Uncomment if you want to include this feature
'Hashtag_Frequency': hashtag_frequency(tweet),
'Mention_Frequency': mention_frequency(tweet),
'count_emojis': count_emojis(tweet),
'special_chars_count': count_special_characters(tweet),
'Stop_Word_Frequency': stop_word_frequency(tweet),
**get_linguistic_features(tweet), # Include linguistic features
'Readability_Score': readability_score(tweet),
'URL_Frequency': get_url_frequency(tweet) # Assuming you have the correct function for this
}
return features
# # Extract features for all tweets
# features_list = [extract_features(tweet) for tweet in X['text']]
# # Create a Pandas DataFrame
# X_new = pd.DataFrame(features_list)
# Loading personality model
def personality_detection(text, threshold=0.05, endpoint= 1.0):
tokenizer = AutoTokenizer.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits.squeeze().detach().numpy()
# Get raw logits
logits = model(**inputs).logits
# Apply sigmoid to squash between 0 and 1
probabilities = torch.sigmoid(logits)
# # Set values less than the threshold to 0.05
# predictions[predictions < threshold] = 0.05
# predictions[predictions > endpoint] = 1.0
# print("per",probabilities[0][0].detach().numpy())
# print("per",probabilities[0][1].detach().numpy())
# print("per",probabilities[0][2].detach().numpy())
# print("per",probabilities[0][3].detach().numpy())
# print("per",probabilities[0][4].detach().numpy())
# label_names = ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness']
# # result = {label_names[i]: f"{predictions[i]*100:.0f}%" for i in range(len(label_names))}
# result = {label_names[i]: f"{probabilities}%" for i in range(len(label_names))}
# probabilities
return [probabilities[0][0].detach().numpy()
,probabilities[0][1].detach().numpy()
,probabilities[0][2].detach().numpy()
,probabilities[0][3].detach().numpy()
,probabilities[0][4].detach().numpy()]
# tokenizer = AutoTokenizer.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
# model = AutoModelForSequenceClassification.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
#Loading emotion model
# tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
# model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
##use this for gpu
# pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True,device=device )
##use this for cpu
def calc_emotion_score(tweet):
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True )
emotions = pipe(tweet)[0]
for i in emotions:
print(i)
return [emotions[0]['score'],emotions[1]['score'],emotions[2]['score'],emotions[3]['score'],emotions[4]['score'],emotions[5]['score'],emotions[6]['score'],emotions[7]['score'],emotions[8]['score'],emotions[9]['score'],emotions[10]['score']]
#DCL model launching
def load_model(tweet):
# model = torch.load("./authormodel.pt",map_location ='cpu')
# print(model)
model_name = "vinai/bertweet-base"
PADDING_MAX_LENGTH = 45
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(tweet, truncation=True, padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True, return_tensors="pt")
print(inputs)
emotion_list = calc_emotion_score(tweet)
print(emotion_list)
features_list = extract_features(tweet)
for i in features_list.values():
emotion_list.append(i)
print("emotion + author",emotion_list)
# print()
# print(features_list)
personality_list = personality_detection(tweet)
print("personality",personality_list)
# person_list = [personality_list["Extraversion"],personality_list['Neuroticism'],personality_list['Agreeableness'],personality_list['Conscientiousness'],personality_list['Openness']]
emotion_list.extend(personality_list)
print("final list",emotion_list)
# print(str(features_list["Average_Word_Length"]))
inputs['emotion_author_vector'] = torch.tensor([emotion_list])
print("final inputs ",inputs)
# []
# inputs["emotion_author_vector"] =
# train_dataloader=DataLoader(inputs, batch_size=1 , shuffle=False)
# print(train_dataloader)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# def tokenize_function(examples):
# return tokenizer.batch_encode_plus(examples["text"], padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True,truncation=True)
class EmotionAuthorGuidedDCLModel(nn.Module):
def __init__(self,dcl_model:nn.Module,dropout:float=0.5):
super(EmotionAuthorGuidedDCLModel, self).__init__()
self.dcl_model = dcl_model
self.dim = 802
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(self.dim, 1)
# Freeze all layers
for param in self.dcl_model.parameters():
param.requires_grad = False
def forward(self,batch_tokenized):
input_ids = batch_tokenized['input_ids']
attention_mask = batch_tokenized['attention_mask']
emotion_vector = batch_tokenized['emotion_author_vector']
bert_output = self.dcl_model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
bert_cls_hidden_state = bert_output[1]
combined_vector =torch.cat((bert_cls_hidden_state,emotion_vector), 1)
d_combined_vector=self.dropout(combined_vector)
linear_output = self.linear(d_combined_vector)
pred_linear = linear_output.squeeze(1)
return pred_linear
# twee
checkpoint = {
"model_state_dict":torch.load("./model.pt",map_location ='cpu') ,
}
# checkpoint=load_checkpoint(run=run_dcl_study,check_point_name="model_checkpoints/")
class DCLArchitecture(nn.Module):
def __init__(self,dropout:float,bert_model_name:str='vinai/bertweet-base'):
super(DCLArchitecture, self).__init__()
self.bert = AutoModel.from_pretrained(bert_model_name)
self.dim = 768
self.dense = nn.Linear(self.dim, 1)
self.dropout = nn.Dropout(dropout)
def forward(self,batch_tokenized, if_train=False):
input_ids = batch_tokenized['input_ids']
attention_mask = batch_tokenized['attention_mask']
bert_output = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
bert_cls_hidden_state = bert_output[1]
torch.cuda.empty_cache()
if if_train:
bert_cls_hidden_state_aug = self.dropout(bert_cls_hidden_state)
bert_cls_hidden_state = torch.cat((bert_cls_hidden_state, bert_cls_hidden_state_aug), dim=1).reshape(-1, self.dim)
else:
bert_cls_hidden_state = self.dropout(bert_cls_hidden_state)
linear_output = self.dense(bert_cls_hidden_state)
linear_output = linear_output.squeeze(1)
return bert_cls_hidden_state, linear_output
# dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=best_prams["DROPOUT"])
dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=0.5)
dcl_model.to(device)
DROPOUT = 0.5
fined_tuned_bert_model=dcl_model.bert
model = EmotionAuthorGuidedDCLModel(dcl_model=fined_tuned_bert_model,dropout=DROPOUT)
model.to(device)
model.load_state_dict(checkpoint["model_state_dict"])
# def test_loop(model, test_dataloader, device):
# # collection_metric = MetricCollection(
# # BinaryAccuracy(),
# # MulticlassPrecision(num_classes=2,average=average),
# # MulticlassRecall(num_classes=2,average=average),
# # MulticlassF1Score(num_classes=2,average=average),
# # BinaryConfusionMatrix()
# # )
# # collection_metric.to(device)
# model.eval()
# print(test_dataloader)
# # total_test_loss = 0.0
# for batch in test_dataloader:
# print(batch)
# batch = {k: v.to(device) for k, v in batch.items()}
# # labels = batch["labels"]
# with torch.no_grad():
# pred = model(batch)
# # loss = criteon(pred, labels.float())
# pred = torch.round(torch.sigmoid(pred))
# return pred
# result_metrics=test_loop(model=model, test_dataloader=train_dataloader,device=device)
# print("Hate speech result",result_metrics)
def predict_single_text(model, inputs,device):
# Preprocess the text
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Pass the preprocessed text through the model
with torch.no_grad():
model.eval()
pred = model(inputs)
# Assuming your model returns a single value for prediction
pred = torch.round(torch.sigmoid(pred)).item()
return pred
predicted_class = predict_single_text(model, inputs, device)
return predicted_class
# print("Hate speech result",predicted_class)
#Gradio interface
def greet(tweet):
print("start")
predicted_class = load_model(tweet)
# features_list = extract_features(tweet)
# print(personality_detection(tweet))
# print(str(features_list["Average_Word_Length"]))
# print(calc_emotion_score(tweet))
print("end")
return str(predicted_class)
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch() |