File size: 14,367 Bytes
7f0eec2
861ab00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0eec2
861ab00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0eec2
 
861ab00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AutoModel
import re
from textblob import TextBlob
from nltk import pos_tag, word_tokenize
from nltk.corpus import stopwords
import emoji 
import string
import nltk
from nltk import pos_tag
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import textstat
import pandas as pd
from transformers import pipeline
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn

    





#Loading author details
def average_word_length(tweet):
    words = tweet.split()
    return sum(len(word) for word in words) / len(words)


def lexical_diversity(tweet):
    words = tweet.split()
    unique_words = set(words)
    return len(unique_words) / len(words)

def count_capital_letters(tweet):
    return sum(1 for char in tweet if char.isupper())

def count_words_surrounded_by_colons(tweet):
    # Define a regular expression pattern to match words surrounded by ':'
    pattern = r':(\w+):'

    # Use re.findall to find all matches in the tweet
    matches = re.findall(pattern, tweet)

    # Return the count of matched words
    return len(matches)

def count_emojis(tweet):
    # Convert emoji symbols to their corresponding names
    tweet_with_names = emoji.demojize(tweet)
    return count_words_surrounded_by_colons(tweet_with_names)

def hashtag_frequency(tweet):
    hashtags = re.findall(r'#\w+', tweet)
    return len(hashtags)

def mention_frequency(tweet):
    mentions = re.findall(r'@\w+', tweet)
    return len(mentions)

def count_special_characters(tweet):
    special_characters = [char for char in tweet if char in string.punctuation]
    return len(special_characters)


def stop_word_frequency(tweet):
    stop_words = set(stopwords.words('english'))
    words = [word for word in tweet.split() if word.lower() in stop_words]
    return len(words)

nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')

def get_linguistic_features(tweet):
    # Tokenize the tweet
    words = word_tokenize(tweet)

    # Remove stopwords
    stop_words = set(stopwords.words('english'))
    filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words]

    # Get parts of speech tags
    pos_tags = pos_tag(filtered_words)

    # Count various linguistic features
    noun_count = sum(1 for word, pos in pos_tags if pos.startswith('N'))
    verb_count = sum(1 for word, pos in pos_tags if pos.startswith('V'))
    participle_count = sum(1 for word, pos in pos_tags if pos.startswith('V') and ('ing' in word or 'ed' in word))
    interjection_count = sum(1 for word, pos in pos_tags if pos == 'UH')
    pronoun_count = sum(1 for word, pos in pos_tags if pos.startswith('PRP'))
    preposition_count = sum(1 for word, pos in pos_tags if pos.startswith('IN'))
    adverb_count = sum(1 for word, pos in pos_tags if pos.startswith('RB'))
    conjunction_count = sum(1 for word, pos in pos_tags if pos.startswith('CC'))

    return {
        'Noun_Count': noun_count,
        'Verb_Count': verb_count,
        'Participle_Count': participle_count,
        'Interjection_Count': interjection_count,
        'Pronoun_Count': pronoun_count,
        'Preposition_Count': preposition_count,
        'Adverb_Count': adverb_count,
        'Conjunction_Count': conjunction_count
    }

def readability_score(tweet):
    return textstat.flesch_reading_ease(tweet)

def get_url_frequency(tweet):
    urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', tweet)
    return len(urls)


# Define a function to extract features from a single tweet
def extract_features(tweet):
    features = {
        'Average_Word_Length': average_word_length(tweet),
        # 'Average_Sentence_Length': average_sentence_length(tweet),
        'Lexical_Diversity': lexical_diversity(tweet),
        'Capital_Letters_Count': count_capital_letters(tweet),  # Uncomment if you want to include this feature
        'Hashtag_Frequency': hashtag_frequency(tweet),
        'Mention_Frequency': mention_frequency(tweet),
        'count_emojis': count_emojis(tweet),
        'special_chars_count': count_special_characters(tweet),
        'Stop_Word_Frequency': stop_word_frequency(tweet),
        **get_linguistic_features(tweet),  # Include linguistic features
        'Readability_Score': readability_score(tweet),
        'URL_Frequency': get_url_frequency(tweet)  # Assuming you have the correct function for this
    }
    return features

# # Extract features for all tweets
# features_list = [extract_features(tweet) for tweet in X['text']]

# # Create a Pandas DataFrame
# X_new = pd.DataFrame(features_list)



# Loading personality model

def personality_detection(text, threshold=0.05, endpoint= 1.0):
    tokenizer = AutoTokenizer.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
    model = AutoModelForSequenceClassification.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
    
    inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
    outputs = model(**inputs)
    predictions = outputs.logits.squeeze().detach().numpy()
    
    # Get raw logits
    logits = model(**inputs).logits
    
    # Apply sigmoid to squash between 0 and 1
    probabilities = torch.sigmoid(logits)
    
    # # Set values less than the threshold to 0.05
    # predictions[predictions < threshold] = 0.05
    # predictions[predictions > endpoint] = 1.0
    # print("per",probabilities[0][0].detach().numpy())
    # print("per",probabilities[0][1].detach().numpy())
    # print("per",probabilities[0][2].detach().numpy())
    # print("per",probabilities[0][3].detach().numpy())
    # print("per",probabilities[0][4].detach().numpy())
    
    # label_names = ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness']
    # # result = {label_names[i]: f"{predictions[i]*100:.0f}%" for i in range(len(label_names))}
    # result = {label_names[i]: f"{probabilities}%" for i in range(len(label_names))}
    # probabilities
    return [probabilities[0][0].detach().numpy()
            ,probabilities[0][1].detach().numpy()
            ,probabilities[0][2].detach().numpy()
            ,probabilities[0][3].detach().numpy()
            ,probabilities[0][4].detach().numpy()]


# tokenizer = AutoTokenizer.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
# model = AutoModelForSequenceClassification.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")

#Loading emotion model

# tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
# model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")

##use this for gpu
# pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True,device=device )

##use this for cpu
def calc_emotion_score(tweet):
    pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True )
    emotions = pipe(tweet)[0]
    for i in emotions:
        print(i)

    return [emotions[0]['score'],emotions[1]['score'],emotions[2]['score'],emotions[3]['score'],emotions[4]['score'],emotions[5]['score'],emotions[6]['score'],emotions[7]['score'],emotions[8]['score'],emotions[9]['score'],emotions[10]['score']]
    





#DCL model launching

def load_model(tweet):
    # model = torch.load("./authormodel.pt",map_location ='cpu') 
    # print(model)

    model_name = "vinai/bertweet-base"
    PADDING_MAX_LENGTH = 45
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    inputs = tokenizer(tweet, truncation=True, padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True, return_tensors="pt")
    print(inputs)
    emotion_list = calc_emotion_score(tweet)
    print(emotion_list)

    features_list = extract_features(tweet)
    for i in features_list.values():
        emotion_list.append(i)
    print("emotion + author",emotion_list)
    # print()
    # print(features_list)
    personality_list = personality_detection(tweet)
    print("personality",personality_list)
    # person_list = [personality_list["Extraversion"],personality_list['Neuroticism'],personality_list['Agreeableness'],personality_list['Conscientiousness'],personality_list['Openness']]
    emotion_list.extend(personality_list)
    print("final list",emotion_list)
    # print(str(features_list["Average_Word_Length"]))
    inputs['emotion_author_vector'] =  torch.tensor([emotion_list])

    print("final inputs    ",inputs)
    
    
    # []
    # inputs["emotion_author_vector"] = 
    # train_dataloader=DataLoader(inputs, batch_size=1 , shuffle=False)
    # print(train_dataloader)
    device = torch.device("cuda:0"  if torch.cuda.is_available() else "cpu")
    # def tokenize_function(examples):
    #     return tokenizer.batch_encode_plus(examples["text"], padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True,truncation=True)
    class EmotionAuthorGuidedDCLModel(nn.Module):
        def __init__(self,dcl_model:nn.Module,dropout:float=0.5):
            super(EmotionAuthorGuidedDCLModel, self).__init__()
            self.dcl_model = dcl_model
            self.dim = 802
            self.dropout = nn.Dropout(dropout)
            self.linear = nn.Linear(self.dim, 1)
            # Freeze all layers
            for param in self.dcl_model.parameters():
                param.requires_grad = False

        def forward(self,batch_tokenized):
            input_ids = batch_tokenized['input_ids']
            attention_mask = batch_tokenized['attention_mask']
            emotion_vector = batch_tokenized['emotion_author_vector']
            bert_output = self.dcl_model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
            bert_cls_hidden_state = bert_output[1]
            combined_vector =torch.cat((bert_cls_hidden_state,emotion_vector), 1)
            d_combined_vector=self.dropout(combined_vector)
            linear_output = self.linear(d_combined_vector)
            pred_linear = linear_output.squeeze(1)
            return pred_linear
    # twee
   
    checkpoint = {
        "model_state_dict":torch.load("./model.pt",map_location ='cpu') ,
    }
     
    # checkpoint=load_checkpoint(run=run_dcl_study,check_point_name="model_checkpoints/")
    
    class DCLArchitecture(nn.Module):
        def __init__(self,dropout:float,bert_model_name:str='vinai/bertweet-base'):
            super(DCLArchitecture, self).__init__()
            self.bert = AutoModel.from_pretrained(bert_model_name)
            self.dim = 768
            self.dense = nn.Linear(self.dim, 1)
            self.dropout = nn.Dropout(dropout)

        def forward(self,batch_tokenized, if_train=False):
            input_ids = batch_tokenized['input_ids']
            attention_mask = batch_tokenized['attention_mask']
            bert_output = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
            bert_cls_hidden_state = bert_output[1]
            torch.cuda.empty_cache()

            if if_train:
                bert_cls_hidden_state_aug = self.dropout(bert_cls_hidden_state)
                bert_cls_hidden_state = torch.cat((bert_cls_hidden_state, bert_cls_hidden_state_aug), dim=1).reshape(-1, self.dim)
            else:
                bert_cls_hidden_state = self.dropout(bert_cls_hidden_state)

            linear_output = self.dense(bert_cls_hidden_state)
            linear_output = linear_output.squeeze(1)

            return bert_cls_hidden_state, linear_output
    

    # dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=best_prams["DROPOUT"])
    dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=0.5)
    dcl_model.to(device)
    
    DROPOUT = 0.5
    fined_tuned_bert_model=dcl_model.bert
    model = EmotionAuthorGuidedDCLModel(dcl_model=fined_tuned_bert_model,dropout=DROPOUT)
    model.to(device)
    model.load_state_dict(checkpoint["model_state_dict"])
    



    # def test_loop(model, test_dataloader, device):
    # # collection_metric = MetricCollection(
    # #       BinaryAccuracy(),
    # #       MulticlassPrecision(num_classes=2,average=average),
    # #       MulticlassRecall(num_classes=2,average=average),
    # #       MulticlassF1Score(num_classes=2,average=average),
    # #       BinaryConfusionMatrix()
    # # )
    # # collection_metric.to(device)
    #     model.eval()
    #     print(test_dataloader)
    #     # total_test_loss = 0.0
    #     for batch in test_dataloader:
    #         print(batch)
    #         batch = {k: v.to(device) for k, v in batch.items()}
    #         # labels = batch["labels"]
    #         with torch.no_grad():
    #             pred = model(batch)
    #             # loss = criteon(pred, labels.float())
    #             pred = torch.round(torch.sigmoid(pred))
        
    #     return pred
    # result_metrics=test_loop(model=model, test_dataloader=train_dataloader,device=device)
    # print("Hate speech result",result_metrics)

    def predict_single_text(model, inputs,device):
        # Preprocess the text
        # inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        # Pass the preprocessed text through the model
        with torch.no_grad():
            model.eval()
            pred = model(inputs)
            # Assuming your model returns a single value for prediction
            pred = torch.round(torch.sigmoid(pred)).item()
        
        return pred

    predicted_class = predict_single_text(model, inputs, device)
    return predicted_class
    # print("Hate speech result",predicted_class)




#Gradio interface
def greet(tweet):
    print("start")
    predicted_class = load_model(tweet)
    # features_list = extract_features(tweet)
    # print(personality_detection(tweet))
    # print(str(features_list["Average_Word_Length"]))
    # print(calc_emotion_score(tweet))
    print("end")
    

    return str(predicted_class)

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()