thushalya
commited on
Commit
•
861ab00
1
Parent(s):
7f0eec2
Add predicted_class as hate speech value
Browse files- .gitignore +2 -0
- app.py +368 -3
- model.pt +3 -0
- requirements.txt +82 -2
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
/env
|
2 |
+
/*env
|
app.py
CHANGED
@@ -1,7 +1,372 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AutoModel
|
4 |
+
import re
|
5 |
+
from textblob import TextBlob
|
6 |
+
from nltk import pos_tag, word_tokenize
|
7 |
+
from nltk.corpus import stopwords
|
8 |
+
import emoji
|
9 |
+
import string
|
10 |
+
import nltk
|
11 |
+
from nltk import pos_tag
|
12 |
+
from nltk.tokenize import word_tokenize
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
import textstat
|
15 |
+
import pandas as pd
|
16 |
+
from transformers import pipeline
|
17 |
+
from torch.utils.data import Dataset, DataLoader
|
18 |
+
import torch.nn as nn
|
19 |
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
#Loading author details
|
27 |
+
def average_word_length(tweet):
|
28 |
+
words = tweet.split()
|
29 |
+
return sum(len(word) for word in words) / len(words)
|
30 |
+
|
31 |
+
|
32 |
+
def lexical_diversity(tweet):
|
33 |
+
words = tweet.split()
|
34 |
+
unique_words = set(words)
|
35 |
+
return len(unique_words) / len(words)
|
36 |
+
|
37 |
+
def count_capital_letters(tweet):
|
38 |
+
return sum(1 for char in tweet if char.isupper())
|
39 |
+
|
40 |
+
def count_words_surrounded_by_colons(tweet):
|
41 |
+
# Define a regular expression pattern to match words surrounded by ':'
|
42 |
+
pattern = r':(\w+):'
|
43 |
+
|
44 |
+
# Use re.findall to find all matches in the tweet
|
45 |
+
matches = re.findall(pattern, tweet)
|
46 |
+
|
47 |
+
# Return the count of matched words
|
48 |
+
return len(matches)
|
49 |
+
|
50 |
+
def count_emojis(tweet):
|
51 |
+
# Convert emoji symbols to their corresponding names
|
52 |
+
tweet_with_names = emoji.demojize(tweet)
|
53 |
+
return count_words_surrounded_by_colons(tweet_with_names)
|
54 |
+
|
55 |
+
def hashtag_frequency(tweet):
|
56 |
+
hashtags = re.findall(r'#\w+', tweet)
|
57 |
+
return len(hashtags)
|
58 |
+
|
59 |
+
def mention_frequency(tweet):
|
60 |
+
mentions = re.findall(r'@\w+', tweet)
|
61 |
+
return len(mentions)
|
62 |
+
|
63 |
+
def count_special_characters(tweet):
|
64 |
+
special_characters = [char for char in tweet if char in string.punctuation]
|
65 |
+
return len(special_characters)
|
66 |
+
|
67 |
+
|
68 |
+
def stop_word_frequency(tweet):
|
69 |
+
stop_words = set(stopwords.words('english'))
|
70 |
+
words = [word for word in tweet.split() if word.lower() in stop_words]
|
71 |
+
return len(words)
|
72 |
+
|
73 |
+
nltk.download('punkt')
|
74 |
+
nltk.download('averaged_perceptron_tagger')
|
75 |
+
nltk.download('stopwords')
|
76 |
+
|
77 |
+
def get_linguistic_features(tweet):
|
78 |
+
# Tokenize the tweet
|
79 |
+
words = word_tokenize(tweet)
|
80 |
+
|
81 |
+
# Remove stopwords
|
82 |
+
stop_words = set(stopwords.words('english'))
|
83 |
+
filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words]
|
84 |
+
|
85 |
+
# Get parts of speech tags
|
86 |
+
pos_tags = pos_tag(filtered_words)
|
87 |
+
|
88 |
+
# Count various linguistic features
|
89 |
+
noun_count = sum(1 for word, pos in pos_tags if pos.startswith('N'))
|
90 |
+
verb_count = sum(1 for word, pos in pos_tags if pos.startswith('V'))
|
91 |
+
participle_count = sum(1 for word, pos in pos_tags if pos.startswith('V') and ('ing' in word or 'ed' in word))
|
92 |
+
interjection_count = sum(1 for word, pos in pos_tags if pos == 'UH')
|
93 |
+
pronoun_count = sum(1 for word, pos in pos_tags if pos.startswith('PRP'))
|
94 |
+
preposition_count = sum(1 for word, pos in pos_tags if pos.startswith('IN'))
|
95 |
+
adverb_count = sum(1 for word, pos in pos_tags if pos.startswith('RB'))
|
96 |
+
conjunction_count = sum(1 for word, pos in pos_tags if pos.startswith('CC'))
|
97 |
+
|
98 |
+
return {
|
99 |
+
'Noun_Count': noun_count,
|
100 |
+
'Verb_Count': verb_count,
|
101 |
+
'Participle_Count': participle_count,
|
102 |
+
'Interjection_Count': interjection_count,
|
103 |
+
'Pronoun_Count': pronoun_count,
|
104 |
+
'Preposition_Count': preposition_count,
|
105 |
+
'Adverb_Count': adverb_count,
|
106 |
+
'Conjunction_Count': conjunction_count
|
107 |
+
}
|
108 |
+
|
109 |
+
def readability_score(tweet):
|
110 |
+
return textstat.flesch_reading_ease(tweet)
|
111 |
+
|
112 |
+
def get_url_frequency(tweet):
|
113 |
+
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', tweet)
|
114 |
+
return len(urls)
|
115 |
+
|
116 |
+
|
117 |
+
# Define a function to extract features from a single tweet
|
118 |
+
def extract_features(tweet):
|
119 |
+
features = {
|
120 |
+
'Average_Word_Length': average_word_length(tweet),
|
121 |
+
# 'Average_Sentence_Length': average_sentence_length(tweet),
|
122 |
+
'Lexical_Diversity': lexical_diversity(tweet),
|
123 |
+
'Capital_Letters_Count': count_capital_letters(tweet), # Uncomment if you want to include this feature
|
124 |
+
'Hashtag_Frequency': hashtag_frequency(tweet),
|
125 |
+
'Mention_Frequency': mention_frequency(tweet),
|
126 |
+
'count_emojis': count_emojis(tweet),
|
127 |
+
'special_chars_count': count_special_characters(tweet),
|
128 |
+
'Stop_Word_Frequency': stop_word_frequency(tweet),
|
129 |
+
**get_linguistic_features(tweet), # Include linguistic features
|
130 |
+
'Readability_Score': readability_score(tweet),
|
131 |
+
'URL_Frequency': get_url_frequency(tweet) # Assuming you have the correct function for this
|
132 |
+
}
|
133 |
+
return features
|
134 |
+
|
135 |
+
# # Extract features for all tweets
|
136 |
+
# features_list = [extract_features(tweet) for tweet in X['text']]
|
137 |
+
|
138 |
+
# # Create a Pandas DataFrame
|
139 |
+
# X_new = pd.DataFrame(features_list)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
# Loading personality model
|
144 |
+
|
145 |
+
def personality_detection(text, threshold=0.05, endpoint= 1.0):
|
146 |
+
tokenizer = AutoTokenizer.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
|
147 |
+
model = AutoModelForSequenceClassification.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
|
148 |
+
|
149 |
+
inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
|
150 |
+
outputs = model(**inputs)
|
151 |
+
predictions = outputs.logits.squeeze().detach().numpy()
|
152 |
+
|
153 |
+
# Get raw logits
|
154 |
+
logits = model(**inputs).logits
|
155 |
+
|
156 |
+
# Apply sigmoid to squash between 0 and 1
|
157 |
+
probabilities = torch.sigmoid(logits)
|
158 |
+
|
159 |
+
# # Set values less than the threshold to 0.05
|
160 |
+
# predictions[predictions < threshold] = 0.05
|
161 |
+
# predictions[predictions > endpoint] = 1.0
|
162 |
+
# print("per",probabilities[0][0].detach().numpy())
|
163 |
+
# print("per",probabilities[0][1].detach().numpy())
|
164 |
+
# print("per",probabilities[0][2].detach().numpy())
|
165 |
+
# print("per",probabilities[0][3].detach().numpy())
|
166 |
+
# print("per",probabilities[0][4].detach().numpy())
|
167 |
+
|
168 |
+
# label_names = ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness']
|
169 |
+
# # result = {label_names[i]: f"{predictions[i]*100:.0f}%" for i in range(len(label_names))}
|
170 |
+
# result = {label_names[i]: f"{probabilities}%" for i in range(len(label_names))}
|
171 |
+
# probabilities
|
172 |
+
return [probabilities[0][0].detach().numpy()
|
173 |
+
,probabilities[0][1].detach().numpy()
|
174 |
+
,probabilities[0][2].detach().numpy()
|
175 |
+
,probabilities[0][3].detach().numpy()
|
176 |
+
,probabilities[0][4].detach().numpy()]
|
177 |
+
|
178 |
+
|
179 |
+
# tokenizer = AutoTokenizer.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
|
180 |
+
# model = AutoModelForSequenceClassification.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
|
181 |
+
|
182 |
+
#Loading emotion model
|
183 |
+
|
184 |
+
# tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
|
185 |
+
# model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
|
186 |
+
|
187 |
+
##use this for gpu
|
188 |
+
# pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True,device=device )
|
189 |
+
|
190 |
+
##use this for cpu
|
191 |
+
def calc_emotion_score(tweet):
|
192 |
+
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True )
|
193 |
+
emotions = pipe(tweet)[0]
|
194 |
+
for i in emotions:
|
195 |
+
print(i)
|
196 |
+
|
197 |
+
return [emotions[0]['score'],emotions[1]['score'],emotions[2]['score'],emotions[3]['score'],emotions[4]['score'],emotions[5]['score'],emotions[6]['score'],emotions[7]['score'],emotions[8]['score'],emotions[9]['score'],emotions[10]['score']]
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
#DCL model launching
|
205 |
+
|
206 |
+
def load_model(tweet):
|
207 |
+
# model = torch.load("./authormodel.pt",map_location ='cpu')
|
208 |
+
# print(model)
|
209 |
+
|
210 |
+
model_name = "vinai/bertweet-base"
|
211 |
+
PADDING_MAX_LENGTH = 45
|
212 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
213 |
+
inputs = tokenizer(tweet, truncation=True, padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True, return_tensors="pt")
|
214 |
+
print(inputs)
|
215 |
+
emotion_list = calc_emotion_score(tweet)
|
216 |
+
print(emotion_list)
|
217 |
+
|
218 |
+
features_list = extract_features(tweet)
|
219 |
+
for i in features_list.values():
|
220 |
+
emotion_list.append(i)
|
221 |
+
print("emotion + author",emotion_list)
|
222 |
+
# print()
|
223 |
+
# print(features_list)
|
224 |
+
personality_list = personality_detection(tweet)
|
225 |
+
print("personality",personality_list)
|
226 |
+
# person_list = [personality_list["Extraversion"],personality_list['Neuroticism'],personality_list['Agreeableness'],personality_list['Conscientiousness'],personality_list['Openness']]
|
227 |
+
emotion_list.extend(personality_list)
|
228 |
+
print("final list",emotion_list)
|
229 |
+
# print(str(features_list["Average_Word_Length"]))
|
230 |
+
inputs['emotion_author_vector'] = torch.tensor([emotion_list])
|
231 |
+
|
232 |
+
print("final inputs ",inputs)
|
233 |
+
|
234 |
+
|
235 |
+
# []
|
236 |
+
# inputs["emotion_author_vector"] =
|
237 |
+
# train_dataloader=DataLoader(inputs, batch_size=1 , shuffle=False)
|
238 |
+
# print(train_dataloader)
|
239 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
240 |
+
# def tokenize_function(examples):
|
241 |
+
# return tokenizer.batch_encode_plus(examples["text"], padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True,truncation=True)
|
242 |
+
class EmotionAuthorGuidedDCLModel(nn.Module):
|
243 |
+
def __init__(self,dcl_model:nn.Module,dropout:float=0.5):
|
244 |
+
super(EmotionAuthorGuidedDCLModel, self).__init__()
|
245 |
+
self.dcl_model = dcl_model
|
246 |
+
self.dim = 802
|
247 |
+
self.dropout = nn.Dropout(dropout)
|
248 |
+
self.linear = nn.Linear(self.dim, 1)
|
249 |
+
# Freeze all layers
|
250 |
+
for param in self.dcl_model.parameters():
|
251 |
+
param.requires_grad = False
|
252 |
+
|
253 |
+
def forward(self,batch_tokenized):
|
254 |
+
input_ids = batch_tokenized['input_ids']
|
255 |
+
attention_mask = batch_tokenized['attention_mask']
|
256 |
+
emotion_vector = batch_tokenized['emotion_author_vector']
|
257 |
+
bert_output = self.dcl_model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
258 |
+
bert_cls_hidden_state = bert_output[1]
|
259 |
+
combined_vector =torch.cat((bert_cls_hidden_state,emotion_vector), 1)
|
260 |
+
d_combined_vector=self.dropout(combined_vector)
|
261 |
+
linear_output = self.linear(d_combined_vector)
|
262 |
+
pred_linear = linear_output.squeeze(1)
|
263 |
+
return pred_linear
|
264 |
+
# twee
|
265 |
+
|
266 |
+
checkpoint = {
|
267 |
+
"model_state_dict":torch.load("./model.pt",map_location ='cpu') ,
|
268 |
+
}
|
269 |
+
|
270 |
+
# checkpoint=load_checkpoint(run=run_dcl_study,check_point_name="model_checkpoints/")
|
271 |
+
|
272 |
+
class DCLArchitecture(nn.Module):
|
273 |
+
def __init__(self,dropout:float,bert_model_name:str='vinai/bertweet-base'):
|
274 |
+
super(DCLArchitecture, self).__init__()
|
275 |
+
self.bert = AutoModel.from_pretrained(bert_model_name)
|
276 |
+
self.dim = 768
|
277 |
+
self.dense = nn.Linear(self.dim, 1)
|
278 |
+
self.dropout = nn.Dropout(dropout)
|
279 |
+
|
280 |
+
def forward(self,batch_tokenized, if_train=False):
|
281 |
+
input_ids = batch_tokenized['input_ids']
|
282 |
+
attention_mask = batch_tokenized['attention_mask']
|
283 |
+
bert_output = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
284 |
+
bert_cls_hidden_state = bert_output[1]
|
285 |
+
torch.cuda.empty_cache()
|
286 |
+
|
287 |
+
if if_train:
|
288 |
+
bert_cls_hidden_state_aug = self.dropout(bert_cls_hidden_state)
|
289 |
+
bert_cls_hidden_state = torch.cat((bert_cls_hidden_state, bert_cls_hidden_state_aug), dim=1).reshape(-1, self.dim)
|
290 |
+
else:
|
291 |
+
bert_cls_hidden_state = self.dropout(bert_cls_hidden_state)
|
292 |
+
|
293 |
+
linear_output = self.dense(bert_cls_hidden_state)
|
294 |
+
linear_output = linear_output.squeeze(1)
|
295 |
+
|
296 |
+
return bert_cls_hidden_state, linear_output
|
297 |
+
|
298 |
+
|
299 |
+
# dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=best_prams["DROPOUT"])
|
300 |
+
dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=0.5)
|
301 |
+
dcl_model.to(device)
|
302 |
+
|
303 |
+
DROPOUT = 0.5
|
304 |
+
fined_tuned_bert_model=dcl_model.bert
|
305 |
+
model = EmotionAuthorGuidedDCLModel(dcl_model=fined_tuned_bert_model,dropout=DROPOUT)
|
306 |
+
model.to(device)
|
307 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
# def test_loop(model, test_dataloader, device):
|
313 |
+
# # collection_metric = MetricCollection(
|
314 |
+
# # BinaryAccuracy(),
|
315 |
+
# # MulticlassPrecision(num_classes=2,average=average),
|
316 |
+
# # MulticlassRecall(num_classes=2,average=average),
|
317 |
+
# # MulticlassF1Score(num_classes=2,average=average),
|
318 |
+
# # BinaryConfusionMatrix()
|
319 |
+
# # )
|
320 |
+
# # collection_metric.to(device)
|
321 |
+
# model.eval()
|
322 |
+
# print(test_dataloader)
|
323 |
+
# # total_test_loss = 0.0
|
324 |
+
# for batch in test_dataloader:
|
325 |
+
# print(batch)
|
326 |
+
# batch = {k: v.to(device) for k, v in batch.items()}
|
327 |
+
# # labels = batch["labels"]
|
328 |
+
# with torch.no_grad():
|
329 |
+
# pred = model(batch)
|
330 |
+
# # loss = criteon(pred, labels.float())
|
331 |
+
# pred = torch.round(torch.sigmoid(pred))
|
332 |
+
|
333 |
+
# return pred
|
334 |
+
# result_metrics=test_loop(model=model, test_dataloader=train_dataloader,device=device)
|
335 |
+
# print("Hate speech result",result_metrics)
|
336 |
+
|
337 |
+
def predict_single_text(model, inputs,device):
|
338 |
+
# Preprocess the text
|
339 |
+
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
340 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
341 |
+
|
342 |
+
# Pass the preprocessed text through the model
|
343 |
+
with torch.no_grad():
|
344 |
+
model.eval()
|
345 |
+
pred = model(inputs)
|
346 |
+
# Assuming your model returns a single value for prediction
|
347 |
+
pred = torch.round(torch.sigmoid(pred)).item()
|
348 |
+
|
349 |
+
return pred
|
350 |
+
|
351 |
+
predicted_class = predict_single_text(model, inputs, device)
|
352 |
+
return predicted_class
|
353 |
+
# print("Hate speech result",predicted_class)
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
#Gradio interface
|
359 |
+
def greet(tweet):
|
360 |
+
print("start")
|
361 |
+
predicted_class = load_model(tweet)
|
362 |
+
# features_list = extract_features(tweet)
|
363 |
+
# print(personality_detection(tweet))
|
364 |
+
# print(str(features_list["Average_Word_Length"]))
|
365 |
+
# print(calc_emotion_score(tweet))
|
366 |
+
print("end")
|
367 |
+
|
368 |
+
|
369 |
+
return str(predicted_class)
|
370 |
|
371 |
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
372 |
+
demo.launch()
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a0522ff50dd3433230896898665a1b3a8d5fbaf72f5c2f6286a51e267f56b45
|
3 |
+
size 539673670
|
requirements.txt
CHANGED
@@ -1,2 +1,82 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.3.0
|
3 |
+
annotated-types==0.6.0
|
4 |
+
anyio==4.3.0
|
5 |
+
attrs==23.2.0
|
6 |
+
certifi==2024.2.2
|
7 |
+
charset-normalizer==3.3.2
|
8 |
+
click==8.1.7
|
9 |
+
colorama==0.4.6
|
10 |
+
contourpy==1.2.1
|
11 |
+
cycler==0.12.1
|
12 |
+
emoji==2.11.1
|
13 |
+
fastapi==0.110.3
|
14 |
+
ffmpy==0.3.2
|
15 |
+
filelock==3.14.0
|
16 |
+
fonttools==4.51.0
|
17 |
+
fsspec==2024.3.1
|
18 |
+
gradio==4.28.3
|
19 |
+
gradio_client==0.16.0
|
20 |
+
h11==0.14.0
|
21 |
+
httpcore==1.0.5
|
22 |
+
httpx==0.27.0
|
23 |
+
huggingface-hub==0.22.2
|
24 |
+
idna==3.7
|
25 |
+
importlib_resources==6.4.0
|
26 |
+
intel-openmp==2021.4.0
|
27 |
+
Jinja2==3.1.3
|
28 |
+
joblib==1.4.0
|
29 |
+
jsonschema==4.22.0
|
30 |
+
jsonschema-specifications==2023.12.1
|
31 |
+
kiwisolver==1.4.5
|
32 |
+
markdown-it-py==3.0.0
|
33 |
+
MarkupSafe==2.1.5
|
34 |
+
matplotlib==3.8.4
|
35 |
+
mdurl==0.1.2
|
36 |
+
mkl==2021.4.0
|
37 |
+
mpmath==1.3.0
|
38 |
+
networkx==3.3
|
39 |
+
nltk==3.8.1
|
40 |
+
numpy==1.26.4
|
41 |
+
orjson==3.10.2
|
42 |
+
packaging==24.0
|
43 |
+
pandas==2.2.2
|
44 |
+
pillow==10.3.0
|
45 |
+
pydantic==2.7.1
|
46 |
+
pydantic_core==2.18.2
|
47 |
+
pydub==0.25.1
|
48 |
+
Pygments==2.17.2
|
49 |
+
pyparsing==3.1.2
|
50 |
+
pyphen==0.15.0
|
51 |
+
python-dateutil==2.9.0.post0
|
52 |
+
python-multipart==0.0.9
|
53 |
+
pytz==2024.1
|
54 |
+
PyYAML==6.0.1
|
55 |
+
referencing==0.35.0
|
56 |
+
regex==2024.4.28
|
57 |
+
requests==2.31.0
|
58 |
+
rich==13.7.1
|
59 |
+
rpds-py==0.18.0
|
60 |
+
ruff==0.4.2
|
61 |
+
safetensors==0.4.3
|
62 |
+
semantic-version==2.10.0
|
63 |
+
shellingham==1.5.4
|
64 |
+
six==1.16.0
|
65 |
+
sniffio==1.3.1
|
66 |
+
starlette==0.37.2
|
67 |
+
sympy==1.12
|
68 |
+
tbb==2021.12.0
|
69 |
+
textblob==0.18.0.post0
|
70 |
+
textstat==0.7.3
|
71 |
+
tokenizers==0.19.1
|
72 |
+
tomlkit==0.12.0
|
73 |
+
toolz==0.12.1
|
74 |
+
torch==2.3.0
|
75 |
+
tqdm==4.66.2
|
76 |
+
transformers==4.40.1
|
77 |
+
typer==0.12.3
|
78 |
+
typing_extensions==4.11.0
|
79 |
+
tzdata==2024.1
|
80 |
+
urllib3==2.2.1
|
81 |
+
uvicorn==0.29.0
|
82 |
+
websockets==11.0.3
|