Severian's picture
initial commit
a8b3f00
raw
history blame
12.8 kB
import os
from collections.abc import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessageTool,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.xinference.llm.llm import XinferenceAILargeLanguageModel
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
from tests.integration_tests.model_runtime.__mock.xinference import setup_xinference_mock
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True)
def test_validate_credentials_for_chat_model(setup_openai_mock, setup_xinference_mock):
model = XinferenceAILargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="ChatGLM3",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": "www " + os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
},
)
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(model="aaaaa", credentials={"server_url": "", "model_uid": ""})
model.validate_credentials(
model="ChatGLM3",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
},
)
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True)
def test_invoke_chat_model(setup_openai_mock, setup_xinference_mock):
model = XinferenceAILargeLanguageModel()
response = model.invoke(
model="ChatGLM3",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={
"temperature": 0.7,
"top_p": 1.0,
},
stop=["you"],
user="abc-123",
stream=False,
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True)
def test_invoke_stream_chat_model(setup_openai_mock, setup_xinference_mock):
model = XinferenceAILargeLanguageModel()
response = model.invoke(
model="ChatGLM3",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={
"temperature": 0.7,
"top_p": 1.0,
},
stop=["you"],
stream=True,
user="abc-123",
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
"""
Function calling of xinference does not support stream mode currently
"""
# def test_invoke_stream_chat_model_with_functions():
# model = XinferenceAILargeLanguageModel()
# response = model.invoke(
# model='ChatGLM3-6b',
# credentials={
# 'server_url': os.environ.get('XINFERENCE_SERVER_URL'),
# 'model_type': 'text-generation',
# 'model_name': 'ChatGLM3',
# 'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID')
# },
# prompt_messages=[
# SystemPromptMessage(
# content='你是一个天气机器人,可以通过调用函数来获取天气信息',
# ),
# UserPromptMessage(
# content='波士顿天气如何?'
# )
# ],
# model_parameters={
# 'temperature': 0,
# 'top_p': 1.0,
# },
# stop=['you'],
# user='abc-123',
# stream=True,
# tools=[
# PromptMessageTool(
# name='get_current_weather',
# description='Get the current weather in a given location',
# parameters={
# "type": "object",
# "properties": {
# "location": {
# "type": "string",
# "description": "The city and state e.g. San Francisco, CA"
# },
# "unit": {
# "type": "string",
# "enum": ["celsius", "fahrenheit"]
# }
# },
# "required": [
# "location"
# ]
# }
# )
# ]
# )
# assert isinstance(response, Generator)
# call: LLMResultChunk = None
# chunks = []
# for chunk in response:
# chunks.append(chunk)
# assert isinstance(chunk, LLMResultChunk)
# assert isinstance(chunk.delta, LLMResultChunkDelta)
# assert isinstance(chunk.delta.message, AssistantPromptMessage)
# assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
# if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
# call = chunk
# break
# assert call is not None
# assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'
# def test_invoke_chat_model_with_functions():
# model = XinferenceAILargeLanguageModel()
# response = model.invoke(
# model='ChatGLM3-6b',
# credentials={
# 'server_url': os.environ.get('XINFERENCE_SERVER_URL'),
# 'model_type': 'text-generation',
# 'model_name': 'ChatGLM3',
# 'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID')
# },
# prompt_messages=[
# UserPromptMessage(
# content='What is the weather like in San Francisco?'
# )
# ],
# model_parameters={
# 'temperature': 0.7,
# 'top_p': 1.0,
# },
# stop=['you'],
# user='abc-123',
# stream=False,
# tools=[
# PromptMessageTool(
# name='get_current_weather',
# description='Get the current weather in a given location',
# parameters={
# "type": "object",
# "properties": {
# "location": {
# "type": "string",
# "description": "The city and state e.g. San Francisco, CA"
# },
# "unit": {
# "type": "string",
# "enum": [
# "c",
# "f"
# ]
# }
# },
# "required": [
# "location"
# ]
# }
# )
# ]
# )
# assert isinstance(response, LLMResult)
# assert len(response.message.content) > 0
# assert response.usage.total_tokens > 0
# assert response.message.tool_calls[0].function.name == 'get_current_weather'
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True)
def test_validate_credentials_for_generation_model(setup_openai_mock, setup_xinference_mock):
model = XinferenceAILargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="alapaca",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": "www " + os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
},
)
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(model="alapaca", credentials={"server_url": "", "model_uid": ""})
model.validate_credentials(
model="alapaca",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
},
)
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True)
def test_invoke_generation_model(setup_openai_mock, setup_xinference_mock):
model = XinferenceAILargeLanguageModel()
response = model.invoke(
model="alapaca",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
},
prompt_messages=[UserPromptMessage(content="the United States is")],
model_parameters={
"temperature": 0.7,
"top_p": 1.0,
},
stop=["you"],
user="abc-123",
stream=False,
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True)
def test_invoke_stream_generation_model(setup_openai_mock, setup_xinference_mock):
model = XinferenceAILargeLanguageModel()
response = model.invoke(
model="alapaca",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
},
prompt_messages=[UserPromptMessage(content="the United States is")],
model_parameters={
"temperature": 0.7,
"top_p": 1.0,
},
stop=["you"],
stream=True,
user="abc-123",
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
def test_get_num_tokens():
model = XinferenceAILargeLanguageModel()
num_tokens = model.get_num_tokens(
model="ChatGLM3",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
tools=[
PromptMessageTool(
name="get_current_weather",
description="Get the current weather in a given location",
parameters={
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
"unit": {"type": "string", "enum": ["c", "f"]},
},
"required": ["location"],
},
)
],
)
assert isinstance(num_tokens, int)
assert num_tokens == 77
num_tokens = model.get_num_tokens(
model="ChatGLM3",
credentials={
"server_url": os.environ.get("XINFERENCE_SERVER_URL"),
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
)
assert isinstance(num_tokens, int)
assert num_tokens == 21