|
import os |
|
from collections.abc import Generator |
|
|
|
import pytest |
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta |
|
from core.model_runtime.entities.message_entities import ( |
|
AssistantPromptMessage, |
|
PromptMessageTool, |
|
SystemPromptMessage, |
|
UserPromptMessage, |
|
) |
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError |
|
from core.model_runtime.model_providers.xinference.llm.llm import XinferenceAILargeLanguageModel |
|
|
|
"""FOR MOCK FIXTURES, DO NOT REMOVE""" |
|
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock |
|
from tests.integration_tests.model_runtime.__mock.xinference import setup_xinference_mock |
|
|
|
|
|
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True) |
|
def test_validate_credentials_for_chat_model(setup_openai_mock, setup_xinference_mock): |
|
model = XinferenceAILargeLanguageModel() |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
model.validate_credentials( |
|
model="ChatGLM3", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": "www " + os.environ.get("XINFERENCE_CHAT_MODEL_UID"), |
|
}, |
|
) |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
model.validate_credentials(model="aaaaa", credentials={"server_url": "", "model_uid": ""}) |
|
|
|
model.validate_credentials( |
|
model="ChatGLM3", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), |
|
}, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True) |
|
def test_invoke_chat_model(setup_openai_mock, setup_xinference_mock): |
|
model = XinferenceAILargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="ChatGLM3", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={ |
|
"temperature": 0.7, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
user="abc-123", |
|
stream=False, |
|
) |
|
|
|
assert isinstance(response, LLMResult) |
|
assert len(response.message.content) > 0 |
|
assert response.usage.total_tokens > 0 |
|
|
|
|
|
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True) |
|
def test_invoke_stream_chat_model(setup_openai_mock, setup_xinference_mock): |
|
model = XinferenceAILargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="ChatGLM3", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={ |
|
"temperature": 0.7, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
stream=True, |
|
user="abc-123", |
|
) |
|
|
|
assert isinstance(response, Generator) |
|
for chunk in response: |
|
assert isinstance(chunk, LLMResultChunk) |
|
assert isinstance(chunk.delta, LLMResultChunkDelta) |
|
assert isinstance(chunk.delta.message, AssistantPromptMessage) |
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True |
|
|
|
|
|
""" |
|
Function calling of xinference does not support stream mode currently |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True) |
|
def test_validate_credentials_for_generation_model(setup_openai_mock, setup_xinference_mock): |
|
model = XinferenceAILargeLanguageModel() |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
model.validate_credentials( |
|
model="alapaca", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": "www " + os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), |
|
}, |
|
) |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
model.validate_credentials(model="alapaca", credentials={"server_url": "", "model_uid": ""}) |
|
|
|
model.validate_credentials( |
|
model="alapaca", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), |
|
}, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True) |
|
def test_invoke_generation_model(setup_openai_mock, setup_xinference_mock): |
|
model = XinferenceAILargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="alapaca", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), |
|
}, |
|
prompt_messages=[UserPromptMessage(content="the United States is")], |
|
model_parameters={ |
|
"temperature": 0.7, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
user="abc-123", |
|
stream=False, |
|
) |
|
|
|
assert isinstance(response, LLMResult) |
|
assert len(response.message.content) > 0 |
|
assert response.usage.total_tokens > 0 |
|
|
|
|
|
@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True) |
|
def test_invoke_stream_generation_model(setup_openai_mock, setup_xinference_mock): |
|
model = XinferenceAILargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="alapaca", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), |
|
}, |
|
prompt_messages=[UserPromptMessage(content="the United States is")], |
|
model_parameters={ |
|
"temperature": 0.7, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
stream=True, |
|
user="abc-123", |
|
) |
|
|
|
assert isinstance(response, Generator) |
|
for chunk in response: |
|
assert isinstance(chunk, LLMResultChunk) |
|
assert isinstance(chunk.delta, LLMResultChunkDelta) |
|
assert isinstance(chunk.delta.message, AssistantPromptMessage) |
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True |
|
|
|
|
|
def test_get_num_tokens(): |
|
model = XinferenceAILargeLanguageModel() |
|
|
|
num_tokens = model.get_num_tokens( |
|
model="ChatGLM3", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
tools=[ |
|
PromptMessageTool( |
|
name="get_current_weather", |
|
description="Get the current weather in a given location", |
|
parameters={ |
|
"type": "object", |
|
"properties": { |
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, |
|
"unit": {"type": "string", "enum": ["c", "f"]}, |
|
}, |
|
"required": ["location"], |
|
}, |
|
) |
|
], |
|
) |
|
|
|
assert isinstance(num_tokens, int) |
|
assert num_tokens == 77 |
|
|
|
num_tokens = model.get_num_tokens( |
|
model="ChatGLM3", |
|
credentials={ |
|
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), |
|
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
) |
|
|
|
assert isinstance(num_tokens, int) |
|
assert num_tokens == 21 |
|
|