import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import ( AssistantPromptMessage, PromptMessageTool, SystemPromptMessage, UserPromptMessage, ) from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.xinference.llm.llm import XinferenceAILargeLanguageModel """FOR MOCK FIXTURES, DO NOT REMOVE""" from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock from tests.integration_tests.model_runtime.__mock.xinference import setup_xinference_mock @pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True) def test_validate_credentials_for_chat_model(setup_openai_mock, setup_xinference_mock): model = XinferenceAILargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model="ChatGLM3", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": "www " + os.environ.get("XINFERENCE_CHAT_MODEL_UID"), }, ) with pytest.raises(CredentialsValidateFailedError): model.validate_credentials(model="aaaaa", credentials={"server_url": "", "model_uid": ""}) model.validate_credentials( model="ChatGLM3", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), }, ) @pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True) def test_invoke_chat_model(setup_openai_mock, setup_xinference_mock): model = XinferenceAILargeLanguageModel() response = model.invoke( model="ChatGLM3", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={ "temperature": 0.7, "top_p": 1.0, }, stop=["you"], user="abc-123", stream=False, ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 assert response.usage.total_tokens > 0 @pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True) def test_invoke_stream_chat_model(setup_openai_mock, setup_xinference_mock): model = XinferenceAILargeLanguageModel() response = model.invoke( model="ChatGLM3", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={ "temperature": 0.7, "top_p": 1.0, }, stop=["you"], stream=True, user="abc-123", ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True """ Function calling of xinference does not support stream mode currently """ # def test_invoke_stream_chat_model_with_functions(): # model = XinferenceAILargeLanguageModel() # response = model.invoke( # model='ChatGLM3-6b', # credentials={ # 'server_url': os.environ.get('XINFERENCE_SERVER_URL'), # 'model_type': 'text-generation', # 'model_name': 'ChatGLM3', # 'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID') # }, # prompt_messages=[ # SystemPromptMessage( # content='你是一个天气机器人,可以通过调用函数来获取天气信息', # ), # UserPromptMessage( # content='波士顿天气如何?' # ) # ], # model_parameters={ # 'temperature': 0, # 'top_p': 1.0, # }, # stop=['you'], # user='abc-123', # stream=True, # tools=[ # PromptMessageTool( # name='get_current_weather', # description='Get the current weather in a given location', # parameters={ # "type": "object", # "properties": { # "location": { # "type": "string", # "description": "The city and state e.g. San Francisco, CA" # }, # "unit": { # "type": "string", # "enum": ["celsius", "fahrenheit"] # } # }, # "required": [ # "location" # ] # } # ) # ] # ) # assert isinstance(response, Generator) # call: LLMResultChunk = None # chunks = [] # for chunk in response: # chunks.append(chunk) # assert isinstance(chunk, LLMResultChunk) # assert isinstance(chunk.delta, LLMResultChunkDelta) # assert isinstance(chunk.delta.message, AssistantPromptMessage) # assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True # if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0: # call = chunk # break # assert call is not None # assert call.delta.message.tool_calls[0].function.name == 'get_current_weather' # def test_invoke_chat_model_with_functions(): # model = XinferenceAILargeLanguageModel() # response = model.invoke( # model='ChatGLM3-6b', # credentials={ # 'server_url': os.environ.get('XINFERENCE_SERVER_URL'), # 'model_type': 'text-generation', # 'model_name': 'ChatGLM3', # 'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID') # }, # prompt_messages=[ # UserPromptMessage( # content='What is the weather like in San Francisco?' # ) # ], # model_parameters={ # 'temperature': 0.7, # 'top_p': 1.0, # }, # stop=['you'], # user='abc-123', # stream=False, # tools=[ # PromptMessageTool( # name='get_current_weather', # description='Get the current weather in a given location', # parameters={ # "type": "object", # "properties": { # "location": { # "type": "string", # "description": "The city and state e.g. San Francisco, CA" # }, # "unit": { # "type": "string", # "enum": [ # "c", # "f" # ] # } # }, # "required": [ # "location" # ] # } # ) # ] # ) # assert isinstance(response, LLMResult) # assert len(response.message.content) > 0 # assert response.usage.total_tokens > 0 # assert response.message.tool_calls[0].function.name == 'get_current_weather' @pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True) def test_validate_credentials_for_generation_model(setup_openai_mock, setup_xinference_mock): model = XinferenceAILargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model="alapaca", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": "www " + os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), }, ) with pytest.raises(CredentialsValidateFailedError): model.validate_credentials(model="alapaca", credentials={"server_url": "", "model_uid": ""}) model.validate_credentials( model="alapaca", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), }, ) @pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True) def test_invoke_generation_model(setup_openai_mock, setup_xinference_mock): model = XinferenceAILargeLanguageModel() response = model.invoke( model="alapaca", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), }, prompt_messages=[UserPromptMessage(content="the United States is")], model_parameters={ "temperature": 0.7, "top_p": 1.0, }, stop=["you"], user="abc-123", stream=False, ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 assert response.usage.total_tokens > 0 @pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True) def test_invoke_stream_generation_model(setup_openai_mock, setup_xinference_mock): model = XinferenceAILargeLanguageModel() response = model.invoke( model="alapaca", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), }, prompt_messages=[UserPromptMessage(content="the United States is")], model_parameters={ "temperature": 0.7, "top_p": 1.0, }, stop=["you"], stream=True, user="abc-123", ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True def test_get_num_tokens(): model = XinferenceAILargeLanguageModel() num_tokens = model.get_num_tokens( model="ChatGLM3", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], tools=[ PromptMessageTool( name="get_current_weather", description="Get the current weather in a given location", parameters={ "type": "object", "properties": { "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["c", "f"]}, }, "required": ["location"], }, ) ], ) assert isinstance(num_tokens, int) assert num_tokens == 77 num_tokens = model.get_num_tokens( model="ChatGLM3", credentials={ "server_url": os.environ.get("XINFERENCE_SERVER_URL"), "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], ) assert isinstance(num_tokens, int) assert num_tokens == 21