File size: 12,811 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
from collections.abc import Generator

import pytest

from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
    AssistantPromptMessage,
    PromptMessageTool,
    SystemPromptMessage,
    UserPromptMessage,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.xinference.llm.llm import XinferenceAILargeLanguageModel

"""FOR MOCK FIXTURES, DO NOT REMOVE"""
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
from tests.integration_tests.model_runtime.__mock.xinference import setup_xinference_mock


@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True)
def test_validate_credentials_for_chat_model(setup_openai_mock, setup_xinference_mock):
    model = XinferenceAILargeLanguageModel()

    with pytest.raises(CredentialsValidateFailedError):
        model.validate_credentials(
            model="ChatGLM3",
            credentials={
                "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
                "model_uid": "www " + os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
            },
        )

    with pytest.raises(CredentialsValidateFailedError):
        model.validate_credentials(model="aaaaa", credentials={"server_url": "", "model_uid": ""})

    model.validate_credentials(
        model="ChatGLM3",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
        },
    )


@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True)
def test_invoke_chat_model(setup_openai_mock, setup_xinference_mock):
    model = XinferenceAILargeLanguageModel()

    response = model.invoke(
        model="ChatGLM3",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
        },
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        model_parameters={
            "temperature": 0.7,
            "top_p": 1.0,
        },
        stop=["you"],
        user="abc-123",
        stream=False,
    )

    assert isinstance(response, LLMResult)
    assert len(response.message.content) > 0
    assert response.usage.total_tokens > 0


@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("chat", "none")], indirect=True)
def test_invoke_stream_chat_model(setup_openai_mock, setup_xinference_mock):
    model = XinferenceAILargeLanguageModel()

    response = model.invoke(
        model="ChatGLM3",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"),
        },
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        model_parameters={
            "temperature": 0.7,
            "top_p": 1.0,
        },
        stop=["you"],
        stream=True,
        user="abc-123",
    )

    assert isinstance(response, Generator)
    for chunk in response:
        assert isinstance(chunk, LLMResultChunk)
        assert isinstance(chunk.delta, LLMResultChunkDelta)
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True


"""
    Function calling of xinference does not support stream mode currently
"""
# def test_invoke_stream_chat_model_with_functions():
#     model = XinferenceAILargeLanguageModel()

#     response = model.invoke(
#         model='ChatGLM3-6b',
#         credentials={
#             'server_url': os.environ.get('XINFERENCE_SERVER_URL'),
#             'model_type': 'text-generation',
#             'model_name': 'ChatGLM3',
#             'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID')
#         },
#         prompt_messages=[
#             SystemPromptMessage(
#                 content='你是一个天气机器人,可以通过调用函数来获取天气信息',
#             ),
#             UserPromptMessage(
#                 content='波士顿天气如何?'
#             )
#         ],
#         model_parameters={
#             'temperature': 0,
#             'top_p': 1.0,
#         },
#         stop=['you'],
#         user='abc-123',
#         stream=True,
#         tools=[
#             PromptMessageTool(
#                 name='get_current_weather',
#                 description='Get the current weather in a given location',
#                 parameters={
#                     "type": "object",
#                     "properties": {
#                         "location": {
#                         "type": "string",
#                             "description": "The city and state e.g. San Francisco, CA"
#                         },
#                         "unit": {
#                             "type": "string",
#                             "enum": ["celsius", "fahrenheit"]
#                         }
#                     },
#                     "required": [
#                         "location"
#                     ]
#                 }
#             )
#         ]
#     )

#     assert isinstance(response, Generator)

#     call: LLMResultChunk = None
#     chunks = []

#     for chunk in response:
#         chunks.append(chunk)
#         assert isinstance(chunk, LLMResultChunk)
#         assert isinstance(chunk.delta, LLMResultChunkDelta)
#         assert isinstance(chunk.delta.message, AssistantPromptMessage)
#         assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True

#         if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
#             call = chunk
#             break

#     assert call is not None
#     assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'

# def test_invoke_chat_model_with_functions():
#     model = XinferenceAILargeLanguageModel()

#     response = model.invoke(
#         model='ChatGLM3-6b',
#         credentials={
#             'server_url': os.environ.get('XINFERENCE_SERVER_URL'),
#             'model_type': 'text-generation',
#             'model_name': 'ChatGLM3',
#             'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID')
#         },
#         prompt_messages=[
#             UserPromptMessage(
#                 content='What is the weather like in San Francisco?'
#             )
#         ],
#         model_parameters={
#             'temperature': 0.7,
#             'top_p': 1.0,
#         },
#         stop=['you'],
#         user='abc-123',
#         stream=False,
#         tools=[
#             PromptMessageTool(
#                 name='get_current_weather',
#                 description='Get the current weather in a given location',
#                 parameters={
#                     "type": "object",
#                     "properties": {
#                         "location": {
#                         "type": "string",
#                             "description": "The city and state e.g. San Francisco, CA"
#                         },
#                         "unit": {
#                             "type": "string",
#                             "enum": [
#                                 "c",
#                                 "f"
#                             ]
#                         }
#                     },
#                     "required": [
#                         "location"
#                     ]
#                 }
#             )
#         ]
#     )

#     assert isinstance(response, LLMResult)
#     assert len(response.message.content) > 0
#     assert response.usage.total_tokens > 0
#     assert response.message.tool_calls[0].function.name == 'get_current_weather'


@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True)
def test_validate_credentials_for_generation_model(setup_openai_mock, setup_xinference_mock):
    model = XinferenceAILargeLanguageModel()

    with pytest.raises(CredentialsValidateFailedError):
        model.validate_credentials(
            model="alapaca",
            credentials={
                "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
                "model_uid": "www " + os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
            },
        )

    with pytest.raises(CredentialsValidateFailedError):
        model.validate_credentials(model="alapaca", credentials={"server_url": "", "model_uid": ""})

    model.validate_credentials(
        model="alapaca",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
        },
    )


@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True)
def test_invoke_generation_model(setup_openai_mock, setup_xinference_mock):
    model = XinferenceAILargeLanguageModel()

    response = model.invoke(
        model="alapaca",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
        },
        prompt_messages=[UserPromptMessage(content="the United States is")],
        model_parameters={
            "temperature": 0.7,
            "top_p": 1.0,
        },
        stop=["you"],
        user="abc-123",
        stream=False,
    )

    assert isinstance(response, LLMResult)
    assert len(response.message.content) > 0
    assert response.usage.total_tokens > 0


@pytest.mark.parametrize(("setup_openai_mock", "setup_xinference_mock"), [("completion", "none")], indirect=True)
def test_invoke_stream_generation_model(setup_openai_mock, setup_xinference_mock):
    model = XinferenceAILargeLanguageModel()

    response = model.invoke(
        model="alapaca",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
        },
        prompt_messages=[UserPromptMessage(content="the United States is")],
        model_parameters={
            "temperature": 0.7,
            "top_p": 1.0,
        },
        stop=["you"],
        stream=True,
        user="abc-123",
    )

    assert isinstance(response, Generator)
    for chunk in response:
        assert isinstance(chunk, LLMResultChunk)
        assert isinstance(chunk.delta, LLMResultChunkDelta)
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True


def test_get_num_tokens():
    model = XinferenceAILargeLanguageModel()

    num_tokens = model.get_num_tokens(
        model="ChatGLM3",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
        },
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        tools=[
            PromptMessageTool(
                name="get_current_weather",
                description="Get the current weather in a given location",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
                        "unit": {"type": "string", "enum": ["c", "f"]},
                    },
                    "required": ["location"],
                },
            )
        ],
    )

    assert isinstance(num_tokens, int)
    assert num_tokens == 77

    num_tokens = model.get_num_tokens(
        model="ChatGLM3",
        credentials={
            "server_url": os.environ.get("XINFERENCE_SERVER_URL"),
            "model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"),
        },
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
    )

    assert isinstance(num_tokens, int)
    assert num_tokens == 21