|
|
|
""" |
|
This module is responsible for animating faces in videos using a combination of deep learning techniques. |
|
It provides a pipeline for generating face animations by processing video frames and extracting face features. |
|
The module utilizes various schedulers and utilities for efficient face animation and supports different types |
|
of latents for more control over the animation process. |
|
|
|
Functions and Classes: |
|
- FaceAnimatePipeline: A class that extends the DiffusionPipeline class from the diffusers library to handle face animation tasks. |
|
- __init__: Initializes the pipeline with the necessary components (VAE, UNets, face locator, etc.). |
|
- prepare_latents: Generates or loads latents for the animation process, scaling them according to the scheduler's requirements. |
|
- prepare_extra_step_kwargs: Prepares extra keyword arguments for the scheduler step, ensuring compatibility with different schedulers. |
|
- decode_latents: Decodes the latents into video frames, ready for animation. |
|
|
|
Usage: |
|
- Import the necessary packages and classes. |
|
- Create a FaceAnimatePipeline instance with the required components. |
|
- Prepare the latents for the animation process. |
|
- Use the pipeline to generate the animated video. |
|
|
|
Note: |
|
- This module is designed to work with the diffusers library, which provides the underlying framework for face animation using deep learning. |
|
- The module is intended for research and development purposes, and further optimization and customization may be required for specific use cases. |
|
""" |
|
|
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers import (DDIMScheduler, DiffusionPipeline, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, PNDMScheduler) |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from einops import rearrange, repeat |
|
from tqdm import tqdm |
|
|
|
from hallo.models.mutual_self_attention import ReferenceAttentionControl |
|
|
|
|
|
@dataclass |
|
class FaceAnimatePipelineOutput(BaseOutput): |
|
""" |
|
FaceAnimatePipelineOutput is a custom class that inherits from BaseOutput and represents the output of the FaceAnimatePipeline. |
|
|
|
Attributes: |
|
videos (Union[torch.Tensor, np.ndarray]): A tensor or numpy array containing the generated video frames. |
|
|
|
Methods: |
|
__init__(self, videos: Union[torch.Tensor, np.ndarray]): Initializes the FaceAnimatePipelineOutput object with the generated video frames. |
|
""" |
|
videos: Union[torch.Tensor, np.ndarray] |
|
|
|
class FaceAnimatePipeline(DiffusionPipeline): |
|
""" |
|
FaceAnimatePipeline is a custom DiffusionPipeline for animating faces. |
|
|
|
It inherits from the DiffusionPipeline class and is used to animate faces by |
|
utilizing a variational autoencoder (VAE), a reference UNet, a denoising UNet, |
|
a face locator, and an image processor. The pipeline is responsible for generating |
|
and animating face latents, and decoding the latents to produce the final video output. |
|
|
|
Attributes: |
|
vae (VaeImageProcessor): Variational autoencoder for processing images. |
|
reference_unet (nn.Module): Reference UNet for mutual self-attention. |
|
denoising_unet (nn.Module): Denoising UNet for image denoising. |
|
face_locator (nn.Module): Face locator for detecting and cropping faces. |
|
image_proj (nn.Module): Image projector for processing images. |
|
scheduler (Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler]): Diffusion scheduler for |
|
controlling the noise level. |
|
|
|
Methods: |
|
__init__(self, vae, reference_unet, denoising_unet, face_locator, |
|
image_proj, scheduler): Initializes the FaceAnimatePipeline |
|
with the given components and scheduler. |
|
prepare_latents(self, batch_size, num_channels_latents, width, height, |
|
video_length, dtype, device, generator=None, latents=None): |
|
Prepares the initial latents for video generation. |
|
prepare_extra_step_kwargs(self, generator, eta): Prepares extra keyword |
|
arguments for the scheduler step. |
|
decode_latents(self, latents): Decodes the latents to produce the final |
|
video output. |
|
""" |
|
def __init__( |
|
self, |
|
vae, |
|
reference_unet, |
|
denoising_unet, |
|
face_locator, |
|
image_proj, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
) -> None: |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
reference_unet=reference_unet, |
|
denoising_unet=denoising_unet, |
|
face_locator=face_locator, |
|
scheduler=scheduler, |
|
image_proj=image_proj, |
|
) |
|
|
|
self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
self.ref_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, |
|
) |
|
|
|
@property |
|
def _execution_device(self): |
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size: int, |
|
num_channels_latents: int, |
|
width: int, |
|
height: int, |
|
video_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.Tensor] = None |
|
): |
|
""" |
|
Prepares the initial latents for video generation. |
|
|
|
Args: |
|
batch_size (int): Number of videos to generate in parallel. |
|
num_channels_latents (int): Number of channels in the latents. |
|
width (int): Width of the video frame. |
|
height (int): Height of the video frame. |
|
video_length (int): Length of the video in frames. |
|
dtype (torch.dtype): Data type of the latents. |
|
device (torch.device): Device to store the latents on. |
|
generator (Optional[torch.Generator]): Random number generator for reproducibility. |
|
latents (Optional[torch.Tensor]): Pre-generated latents (optional). |
|
|
|
Returns: |
|
latents (torch.Tensor): Tensor of shape (batch_size, num_channels_latents, width, height) |
|
containing the initial latents for video generation. |
|
""" |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
video_length, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
""" |
|
Prepares extra keyword arguments for the scheduler step. |
|
|
|
Args: |
|
generator (Optional[torch.Generator]): Random number generator for reproducibility. |
|
eta (float): The eta (η) parameter used with the DDIMScheduler. |
|
It corresponds to η in the DDIM paper (https://arxiv.org/abs/2010.02502) and should be between [0, 1]. |
|
|
|
Returns: |
|
dict: A dictionary containing the extra keyword arguments for the scheduler step. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def decode_latents(self, latents): |
|
""" |
|
Decode the latents to produce a video. |
|
|
|
Parameters: |
|
latents (torch.Tensor): The latents to be decoded. |
|
|
|
Returns: |
|
video (torch.Tensor): The decoded video. |
|
video_length (int): The length of the video in frames. |
|
""" |
|
video_length = latents.shape[2] |
|
latents = 1 / 0.18215 * latents |
|
latents = rearrange(latents, "b c f h w -> (b f) c h w") |
|
|
|
video = [] |
|
for frame_idx in tqdm(range(latents.shape[0])): |
|
video.append(self.vae.decode( |
|
latents[frame_idx: frame_idx + 1]).sample) |
|
video = torch.cat(video) |
|
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) |
|
video = (video / 2 + 0.5).clamp(0, 1) |
|
|
|
video = video.cpu().float().numpy() |
|
return video |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
ref_image, |
|
face_emb, |
|
audio_tensor, |
|
face_mask, |
|
pixel_values_full_mask, |
|
pixel_values_face_mask, |
|
pixel_values_lip_mask, |
|
width, |
|
height, |
|
video_length, |
|
num_inference_steps, |
|
guidance_scale, |
|
num_images_per_prompt=1, |
|
eta: float = 0.0, |
|
motion_scale: Optional[List[torch.Tensor]] = None, |
|
generator: Optional[Union[torch.Generator, |
|
List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "tensor", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[ |
|
int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
device = self._execution_device |
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
batch_size = 1 |
|
|
|
|
|
clip_image_embeds = face_emb |
|
clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype) |
|
|
|
encoder_hidden_states = self.image_proj(clip_image_embeds) |
|
uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds)) |
|
|
|
if do_classifier_free_guidance: |
|
encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0) |
|
|
|
reference_control_writer = ReferenceAttentionControl( |
|
self.reference_unet, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
mode="write", |
|
batch_size=batch_size, |
|
fusion_blocks="full", |
|
) |
|
reference_control_reader = ReferenceAttentionControl( |
|
self.denoising_unet, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
mode="read", |
|
batch_size=batch_size, |
|
fusion_blocks="full", |
|
) |
|
|
|
num_channels_latents = self.denoising_unet.in_channels |
|
|
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
width, |
|
height, |
|
video_length, |
|
clip_image_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w") |
|
ref_image_tensor = self.ref_image_processor.preprocess(ref_image_tensor, height=height, width=width) |
|
ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device) |
|
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean |
|
ref_image_latents = ref_image_latents * 0.18215 |
|
|
|
|
|
face_mask = face_mask.unsqueeze(1).to(dtype=self.face_locator.dtype, device=self.face_locator.device) |
|
face_mask = repeat(face_mask, "b f c h w -> b (repeat f) c h w", repeat=video_length) |
|
face_mask = face_mask.transpose(1, 2) |
|
face_mask = self.face_locator(face_mask) |
|
face_mask = torch.cat([torch.zeros_like(face_mask), face_mask], dim=0) if do_classifier_free_guidance else face_mask |
|
|
|
pixel_values_full_mask = ( |
|
[torch.cat([mask] * 2) for mask in pixel_values_full_mask] |
|
if do_classifier_free_guidance |
|
else pixel_values_full_mask |
|
) |
|
pixel_values_face_mask = ( |
|
[torch.cat([mask] * 2) for mask in pixel_values_face_mask] |
|
if do_classifier_free_guidance |
|
else pixel_values_face_mask |
|
) |
|
pixel_values_lip_mask = ( |
|
[torch.cat([mask] * 2) for mask in pixel_values_lip_mask] |
|
if do_classifier_free_guidance |
|
else pixel_values_lip_mask |
|
) |
|
pixel_values_face_mask_ = [] |
|
for mask in pixel_values_face_mask: |
|
pixel_values_face_mask_.append( |
|
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) |
|
pixel_values_face_mask = pixel_values_face_mask_ |
|
pixel_values_lip_mask_ = [] |
|
for mask in pixel_values_lip_mask: |
|
pixel_values_lip_mask_.append( |
|
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) |
|
pixel_values_lip_mask = pixel_values_lip_mask_ |
|
pixel_values_full_mask_ = [] |
|
for mask in pixel_values_full_mask: |
|
pixel_values_full_mask_.append( |
|
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) |
|
pixel_values_full_mask = pixel_values_full_mask_ |
|
|
|
|
|
uncond_audio_tensor = torch.zeros_like(audio_tensor) |
|
audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0) |
|
audio_tensor = audio_tensor.to(dtype=self.denoising_unet.dtype, device=self.denoising_unet.device) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
if i == 0: |
|
self.reference_unet( |
|
ref_image_latents.repeat( |
|
(2 if do_classifier_free_guidance else 1), 1, 1, 1 |
|
), |
|
torch.zeros_like(t), |
|
encoder_hidden_states=encoder_hidden_states, |
|
return_dict=False, |
|
) |
|
reference_control_reader.update(reference_control_writer) |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
noise_pred = self.denoising_unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=encoder_hidden_states, |
|
mask_cond_fea=face_mask, |
|
full_mask=pixel_values_full_mask, |
|
face_mask=pixel_values_face_mask, |
|
lip_mask=pixel_values_lip_mask, |
|
audio_embedding=audio_tensor, |
|
motion_scale=motion_scale, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0: |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
reference_control_reader.clear() |
|
reference_control_writer.clear() |
|
|
|
|
|
images = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "tensor": |
|
images = torch.from_numpy(images) |
|
|
|
if not return_dict: |
|
return images |
|
|
|
return FaceAnimatePipelineOutput(videos=images) |
|
|