File size: 19,303 Bytes
5a510e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# pylint: disable=R0801
"""
This module is responsible for animating faces in videos using a combination of deep learning techniques.
It provides a pipeline for generating face animations by processing video frames and extracting face features. 
The module utilizes various schedulers and utilities for efficient face animation and supports different types 
    of latents for more control over the animation process.

Functions and Classes:
- FaceAnimatePipeline: A class that extends the DiffusionPipeline class from the diffusers library to handle face animation tasks.
  - __init__: Initializes the pipeline with the necessary components (VAE, UNets, face locator, etc.).
  - prepare_latents: Generates or loads latents for the animation process, scaling them according to the scheduler's requirements.
  - prepare_extra_step_kwargs: Prepares extra keyword arguments for the scheduler step, ensuring compatibility with different schedulers.
  - decode_latents: Decodes the latents into video frames, ready for animation.

Usage:
- Import the necessary packages and classes.
- Create a FaceAnimatePipeline instance with the required components.
- Prepare the latents for the animation process.
- Use the pipeline to generate the animated video.

Note:
- This module is designed to work with the diffusers library, which provides the underlying framework for face animation using deep learning.
- The module is intended for research and development purposes, and further optimization and customization may be required for specific use cases.
"""

import inspect
from dataclasses import dataclass
from typing import Callable, List, Optional, Union

import numpy as np
import torch
from diffusers import (DDIMScheduler, DiffusionPipeline,
                       DPMSolverMultistepScheduler,
                       EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
                       LMSDiscreteScheduler, PNDMScheduler)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange, repeat
from tqdm import tqdm

from hallo.models.mutual_self_attention import ReferenceAttentionControl


@dataclass
class FaceAnimatePipelineOutput(BaseOutput):
    """
    FaceAnimatePipelineOutput is a custom class that inherits from BaseOutput and represents the output of the FaceAnimatePipeline.
    
    Attributes:
        videos (Union[torch.Tensor, np.ndarray]): A tensor or numpy array containing the generated video frames.
    
    Methods:
        __init__(self, videos: Union[torch.Tensor, np.ndarray]): Initializes the FaceAnimatePipelineOutput object with the generated video frames.
    """
    videos: Union[torch.Tensor, np.ndarray]

class FaceAnimatePipeline(DiffusionPipeline):
    """
    FaceAnimatePipeline is a custom DiffusionPipeline for animating faces.
    
    It inherits from the DiffusionPipeline class and is used to animate faces by
    utilizing a variational autoencoder (VAE), a reference UNet, a denoising UNet,
    a face locator, and an image processor. The pipeline is responsible for generating
    and animating face latents, and decoding the latents to produce the final video output.
    
    Attributes:
        vae (VaeImageProcessor): Variational autoencoder for processing images.
        reference_unet (nn.Module): Reference UNet for mutual self-attention.
        denoising_unet (nn.Module): Denoising UNet for image denoising.
        face_locator (nn.Module): Face locator for detecting and cropping faces.
        image_proj (nn.Module): Image projector for processing images.
        scheduler (Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler,
                         EulerDiscreteScheduler, EulerAncestralDiscreteScheduler,
                         DPMSolverMultistepScheduler]): Diffusion scheduler for
                         controlling the noise level.
    
    Methods:
        __init__(self, vae, reference_unet, denoising_unet, face_locator,
                 image_proj, scheduler): Initializes the FaceAnimatePipeline
                 with the given components and scheduler.
        prepare_latents(self, batch_size, num_channels_latents, width, height,
                       video_length, dtype, device, generator=None, latents=None):
                       Prepares the initial latents for video generation.
        prepare_extra_step_kwargs(self, generator, eta): Prepares extra keyword
                       arguments for the scheduler step.
        decode_latents(self, latents): Decodes the latents to produce the final
                       video output.
    """
    def __init__(
        self,
        vae,
        reference_unet,
        denoising_unet,
        face_locator,
        image_proj,
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
    ) -> None:
        super().__init__()

        self.register_modules(
            vae=vae,
            reference_unet=reference_unet,
            denoising_unet=denoising_unet,
            face_locator=face_locator,
            scheduler=scheduler,
            image_proj=image_proj,
        )

        self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1)

        self.ref_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True,
        )

    @property
    def _execution_device(self):
        if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def prepare_latents(
        self,
        batch_size: int,                      # Number of videos to generate in parallel
        num_channels_latents: int,           # Number of channels in the latents
        width: int,                           # Width of the video frame
        height: int,                         # Height of the video frame
        video_length: int,                   # Length of the video in frames
        dtype: torch.dtype,                 # Data type of the latents
        device: torch.device,               # Device to store the latents on
        generator: Optional[torch.Generator] = None,  # Random number generator for reproducibility
        latents: Optional[torch.Tensor] = None  # Pre-generated latents (optional)
    ):
        """
        Prepares the initial latents for video generation.

        Args:
            batch_size (int): Number of videos to generate in parallel.
            num_channels_latents (int): Number of channels in the latents.
            width (int): Width of the video frame.
            height (int): Height of the video frame.
            video_length (int): Length of the video in frames.
            dtype (torch.dtype): Data type of the latents.
            device (torch.device): Device to store the latents on.
            generator (Optional[torch.Generator]): Random number generator for reproducibility.
            latents (Optional[torch.Tensor]): Pre-generated latents (optional).

        Returns:
            latents (torch.Tensor): Tensor of shape (batch_size, num_channels_latents, width, height)
            containing the initial latents for video generation.
        """
        shape = (
            batch_size,
            num_channels_latents,
            video_length,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(
                shape, generator=generator, device=device, dtype=dtype
            )
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_extra_step_kwargs(self, generator, eta):
        """
        Prepares extra keyword arguments for the scheduler step.

        Args:
            generator (Optional[torch.Generator]): Random number generator for reproducibility.
            eta (float): The eta (η) parameter used with the DDIMScheduler. 
            It corresponds to η in the DDIM paper (https://arxiv.org/abs/2010.02502) and should be between [0, 1].

        Returns:
            dict: A dictionary containing the extra keyword arguments for the scheduler step.
        """
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def decode_latents(self, latents):
        """
        Decode the latents to produce a video.

        Parameters:
        latents (torch.Tensor): The latents to be decoded.

        Returns:
        video (torch.Tensor): The decoded video.
        video_length (int): The length of the video in frames.
        """
        video_length = latents.shape[2]
        latents = 1 / 0.18215 * latents
        latents = rearrange(latents, "b c f h w -> (b f) c h w")
        # video = self.vae.decode(latents).sample
        video = []
        for frame_idx in tqdm(range(latents.shape[0])):
            video.append(self.vae.decode(
                latents[frame_idx: frame_idx + 1]).sample)
        video = torch.cat(video)
        video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
        video = (video / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        video = video.cpu().float().numpy()
        return video


    @torch.no_grad()
    def __call__(
        self,
        ref_image,
        face_emb,
        audio_tensor,
        face_mask,
        pixel_values_full_mask,
        pixel_values_face_mask,
        pixel_values_lip_mask,
        width,
        height,
        video_length,
        num_inference_steps,
        guidance_scale,
        num_images_per_prompt=1,
        eta: float = 0.0,
        motion_scale: Optional[List[torch.Tensor]] = None,
        generator: Optional[Union[torch.Generator,
                                  List[torch.Generator]]] = None,
        output_type: Optional[str] = "tensor",
        return_dict: bool = True,
        callback: Optional[Callable[[
            int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        # Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        device = self._execution_device

        do_classifier_free_guidance = guidance_scale > 1.0

        # Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        batch_size = 1

        # prepare clip image embeddings
        clip_image_embeds = face_emb
        clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype)

        encoder_hidden_states = self.image_proj(clip_image_embeds)
        uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds))

        if do_classifier_free_guidance:
            encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0)

        reference_control_writer = ReferenceAttentionControl(
            self.reference_unet,
            do_classifier_free_guidance=do_classifier_free_guidance,
            mode="write",
            batch_size=batch_size,
            fusion_blocks="full",
        )
        reference_control_reader = ReferenceAttentionControl(
            self.denoising_unet,
            do_classifier_free_guidance=do_classifier_free_guidance,
            mode="read",
            batch_size=batch_size,
            fusion_blocks="full",
        )

        num_channels_latents = self.denoising_unet.in_channels

        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            width,
            height,
            video_length,
            clip_image_embeds.dtype,
            device,
            generator,
        )

        # Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # Prepare ref image latents
        ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w")
        ref_image_tensor = self.ref_image_processor.preprocess(ref_image_tensor, height=height, width=width)  # (bs, c, width, height)
        ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device)
        ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
        ref_image_latents = ref_image_latents * 0.18215  # (b, 4, h, w)


        face_mask = face_mask.unsqueeze(1).to(dtype=self.face_locator.dtype, device=self.face_locator.device) # (bs, f, c, H, W)
        face_mask = repeat(face_mask, "b f c h w -> b (repeat f) c h w", repeat=video_length)
        face_mask = face_mask.transpose(1, 2)  # (bs, c, f, H, W)
        face_mask = self.face_locator(face_mask)
        face_mask = torch.cat([torch.zeros_like(face_mask), face_mask], dim=0) if do_classifier_free_guidance else face_mask

        pixel_values_full_mask = (
            [torch.cat([mask] * 2) for mask in pixel_values_full_mask]
            if do_classifier_free_guidance
            else pixel_values_full_mask
        )
        pixel_values_face_mask = (
            [torch.cat([mask] * 2) for mask in pixel_values_face_mask]
            if do_classifier_free_guidance
            else pixel_values_face_mask
        )
        pixel_values_lip_mask = (
            [torch.cat([mask] * 2) for mask in pixel_values_lip_mask]
            if do_classifier_free_guidance
            else pixel_values_lip_mask
        )
        pixel_values_face_mask_ = []
        for mask in pixel_values_face_mask:
            pixel_values_face_mask_.append(
                mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype))
        pixel_values_face_mask = pixel_values_face_mask_
        pixel_values_lip_mask_ = []
        for mask in pixel_values_lip_mask:
            pixel_values_lip_mask_.append(
                mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype))
        pixel_values_lip_mask = pixel_values_lip_mask_
        pixel_values_full_mask_ = []
        for mask in pixel_values_full_mask:
            pixel_values_full_mask_.append(
                mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype))
        pixel_values_full_mask = pixel_values_full_mask_


        uncond_audio_tensor = torch.zeros_like(audio_tensor)
        audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0)
        audio_tensor = audio_tensor.to(dtype=self.denoising_unet.dtype, device=self.denoising_unet.device)

        # denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Forward reference image
                if i == 0:
                    self.reference_unet(
                        ref_image_latents.repeat(
                            (2 if do_classifier_free_guidance else 1), 1, 1, 1
                        ),
                        torch.zeros_like(t),
                        encoder_hidden_states=encoder_hidden_states,
                        return_dict=False,
                    )
                    reference_control_reader.update(reference_control_writer)

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                noise_pred = self.denoising_unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=encoder_hidden_states,
                    mask_cond_fea=face_mask,
                    full_mask=pixel_values_full_mask,
                    face_mask=pixel_values_face_mask,
                    lip_mask=pixel_values_lip_mask,
                    audio_embedding=audio_tensor,
                    motion_scale=motion_scale,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

            reference_control_reader.clear()
            reference_control_writer.clear()

        # Post-processing
        images = self.decode_latents(latents)  # (b, c, f, h, w)

        # Convert to tensor
        if output_type == "tensor":
            images = torch.from_numpy(images)

        if not return_dict:
            return images

        return FaceAnimatePipelineOutput(videos=images)