root
initial commit
5e0b9df
raw
history blame
11.6 kB
# ------------------------------------------------------------------------
# HOTR official code : hotr/data/evaluators/hico_eval.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from QPIC (https://github.com/hitachi-rd-cv/qpic)
# Copyright (c) Hitachi, Ltd. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import numpy as np
from collections import defaultdict
class HICOEvaluator():
def __init__(self, preds, gts, rare_triplets, non_rare_triplets, correct_mat):
self.overlap_iou = 0.5
self.max_hois = 100
self.rare_triplets = rare_triplets
self.non_rare_triplets = non_rare_triplets
self.fp = defaultdict(list)
self.tp = defaultdict(list)
self.score = defaultdict(list)
self.sum_gts = defaultdict(lambda: 0)
self.gt_triplets = []
self.preds = []
for img_preds in preds:
img_preds = {k: v.to('cpu').numpy() for k, v in img_preds.items() if k != 'hoi_recognition_time'}
bboxes = [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_preds['boxes'], img_preds['labels'])]
hoi_scores = img_preds['verb_scores']
verb_labels = np.tile(np.arange(hoi_scores.shape[1]), (hoi_scores.shape[0], 1))
subject_ids = np.tile(img_preds['sub_ids'], (hoi_scores.shape[1], 1)).T
object_ids = np.tile(img_preds['obj_ids'], (hoi_scores.shape[1], 1)).T
hoi_scores = hoi_scores.ravel()
verb_labels = verb_labels.ravel()
subject_ids = subject_ids.ravel()
object_ids = object_ids.ravel()
if len(subject_ids) > 0:
object_labels = np.array([bboxes[object_id]['category_id'] for object_id in object_ids])
masks = correct_mat[verb_labels, object_labels]
hoi_scores *= masks
hois = [{'subject_id': subject_id, 'object_id': object_id, 'category_id': category_id, 'score': score} for
subject_id, object_id, category_id, score in zip(subject_ids, object_ids, verb_labels, hoi_scores)]
hois.sort(key=lambda k: (k.get('score', 0)), reverse=True)
hois = hois[:self.max_hois]
else:
hois = []
self.preds.append({
'predictions': bboxes,
'hoi_prediction': hois
})
self.gts = []
for img_gts in gts:
img_gts = {k: v.to('cpu').numpy() for k, v in img_gts.items() if k != 'id'}
self.gts.append({
'annotations': [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_gts['boxes'], img_gts['labels'])],
'hoi_annotation': [{'subject_id': hoi[0], 'object_id': hoi[1], 'category_id': hoi[2]} for hoi in img_gts['hois']]
})
for hoi in self.gts[-1]['hoi_annotation']:
triplet = (self.gts[-1]['annotations'][hoi['subject_id']]['category_id'],
self.gts[-1]['annotations'][hoi['object_id']]['category_id'],
hoi['category_id'])
if triplet not in self.gt_triplets:
self.gt_triplets.append(triplet)
self.sum_gts[triplet] += 1
def evaluate(self):
for img_id, (img_preds, img_gts) in enumerate(zip(self.preds, self.gts)):
print(f"Evaluating Score Matrix... : [{(img_id+1):>4}/{len(self.gts):<4}]" ,flush=True, end="\r")
pred_bboxes = img_preds['predictions']
gt_bboxes = img_gts['annotations']
pred_hois = img_preds['hoi_prediction']
gt_hois = img_gts['hoi_annotation']
if len(gt_bboxes) != 0:
bbox_pairs, bbox_overlaps = self.compute_iou_mat(gt_bboxes, pred_bboxes)
self.compute_fptp(pred_hois, gt_hois, bbox_pairs, pred_bboxes, bbox_overlaps)
else:
for pred_hoi in pred_hois:
triplet = [pred_bboxes[pred_hoi['subject_id']]['category_id'],
pred_bboxes[pred_hoi['object_id']]['category_id'], pred_hoi['category_id']]
if triplet not in self.gt_triplets:
continue
self.tp[triplet].append(0)
self.fp[triplet].append(1)
self.score[triplet].append(pred_hoi['score'])
print(f"[stats] Score Matrix Generation completed!! ")
map = self.compute_map()
return map
def compute_map(self):
ap = defaultdict(lambda: 0)
rare_ap = defaultdict(lambda: 0)
non_rare_ap = defaultdict(lambda: 0)
max_recall = defaultdict(lambda: 0)
for triplet in self.gt_triplets:
sum_gts = self.sum_gts[triplet]
if sum_gts == 0:
continue
tp = np.array((self.tp[triplet]))
fp = np.array((self.fp[triplet]))
if len(tp) == 0:
ap[triplet] = 0
max_recall[triplet] = 0
if triplet in self.rare_triplets:
rare_ap[triplet] = 0
elif triplet in self.non_rare_triplets:
non_rare_ap[triplet] = 0
else:
print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet))
continue
score = np.array(self.score[triplet])
sort_inds = np.argsort(-score)
fp = fp[sort_inds]
tp = tp[sort_inds]
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / sum_gts
prec = tp / (fp + tp)
ap[triplet] = self.voc_ap(rec, prec)
max_recall[triplet] = np.amax(rec)
if triplet in self.rare_triplets:
rare_ap[triplet] = ap[triplet]
elif triplet in self.non_rare_triplets:
non_rare_ap[triplet] = ap[triplet]
else:
print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet))
m_ap = np.mean(list(ap.values())) * 100 # percentage
m_ap_rare = np.mean(list(rare_ap.values())) * 100 # percentage
m_ap_non_rare = np.mean(list(non_rare_ap.values())) * 100 # percentage
m_max_recall = np.mean(list(max_recall.values()))
return {'mAP': m_ap, 'mAP rare': m_ap_rare, 'mAP non-rare': m_ap_non_rare, 'mean max recall': m_max_recall}
def voc_ap(self, rec, prec):
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
return ap
def compute_fptp(self, pred_hois, gt_hois, match_pairs, pred_bboxes, bbox_overlaps):
pos_pred_ids = match_pairs.keys()
vis_tag = np.zeros(len(gt_hois))
pred_hois.sort(key=lambda k: (k.get('score', 0)), reverse=True)
if len(pred_hois) != 0:
for pred_hoi in pred_hois:
is_match = 0
if len(match_pairs) != 0 and pred_hoi['subject_id'] in pos_pred_ids and pred_hoi['object_id'] in pos_pred_ids:
pred_sub_ids = match_pairs[pred_hoi['subject_id']]
pred_obj_ids = match_pairs[pred_hoi['object_id']]
pred_sub_overlaps = bbox_overlaps[pred_hoi['subject_id']]
pred_obj_overlaps = bbox_overlaps[pred_hoi['object_id']]
pred_category_id = pred_hoi['category_id']
max_overlap = 0
max_gt_hoi = 0
for gt_hoi in gt_hois:
if gt_hoi['subject_id'] in pred_sub_ids and gt_hoi['object_id'] in pred_obj_ids \
and pred_category_id == gt_hoi['category_id']:
is_match = 1
min_overlap_gt = min(pred_sub_overlaps[pred_sub_ids.index(gt_hoi['subject_id'])],
pred_obj_overlaps[pred_obj_ids.index(gt_hoi['object_id'])])
if min_overlap_gt > max_overlap:
max_overlap = min_overlap_gt
max_gt_hoi = gt_hoi
triplet = (pred_bboxes[pred_hoi['subject_id']]['category_id'], pred_bboxes[pred_hoi['object_id']]['category_id'],
pred_hoi['category_id'])
if triplet not in self.gt_triplets:
continue
if is_match == 1 and vis_tag[gt_hois.index(max_gt_hoi)] == 0:
self.fp[triplet].append(0)
self.tp[triplet].append(1)
vis_tag[gt_hois.index(max_gt_hoi)] =1
else:
self.fp[triplet].append(1)
self.tp[triplet].append(0)
self.score[triplet].append(pred_hoi['score'])
def compute_iou_mat(self, bbox_list1, bbox_list2):
iou_mat = np.zeros((len(bbox_list1), len(bbox_list2)))
if len(bbox_list1) == 0 or len(bbox_list2) == 0:
return {}
for i, bbox1 in enumerate(bbox_list1):
for j, bbox2 in enumerate(bbox_list2):
iou_i = self.compute_IOU(bbox1, bbox2)
iou_mat[i, j] = iou_i
iou_mat_ov=iou_mat.copy()
iou_mat[iou_mat>=self.overlap_iou] = 1
iou_mat[iou_mat<self.overlap_iou] = 0
match_pairs = np.nonzero(iou_mat)
match_pairs_dict = {}
match_pair_overlaps = {}
if iou_mat.max() > 0:
for i, pred_id in enumerate(match_pairs[1]):
if pred_id not in match_pairs_dict.keys():
match_pairs_dict[pred_id] = []
match_pair_overlaps[pred_id]=[]
match_pairs_dict[pred_id].append(match_pairs[0][i])
match_pair_overlaps[pred_id].append(iou_mat_ov[match_pairs[0][i],pred_id])
return match_pairs_dict, match_pair_overlaps
def compute_IOU(self, bbox1, bbox2):
if isinstance(bbox1['category_id'], str):
bbox1['category_id'] = int(bbox1['category_id'].replace('\n', ''))
if isinstance(bbox2['category_id'], str):
bbox2['category_id'] = int(bbox2['category_id'].replace('\n', ''))
if bbox1['category_id'] == bbox2['category_id']:
rec1 = bbox1['bbox']
rec2 = bbox2['bbox']
# computing area of each rectangles
S_rec1 = (rec1[2] - rec1[0]+1) * (rec1[3] - rec1[1]+1)
S_rec2 = (rec2[2] - rec2[0]+1) * (rec2[3] - rec2[1]+1)
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
# judge if there is an intersect
if left_line >= right_line or top_line >= bottom_line:
return 0
else:
intersect = (right_line - left_line+1) * (bottom_line - top_line+1)
return intersect / (sum_area - intersect)
else:
return 0