File size: 11,550 Bytes
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# ------------------------------------------------------------------------
# HOTR official code : hotr/data/evaluators/hico_eval.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from QPIC (https://github.com/hitachi-rd-cv/qpic)
# Copyright (c) Hitachi, Ltd. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import numpy as np
from collections import defaultdict

class HICOEvaluator():
    def __init__(self, preds, gts, rare_triplets, non_rare_triplets, correct_mat):
        self.overlap_iou = 0.5
        self.max_hois = 100

        self.rare_triplets = rare_triplets
        self.non_rare_triplets = non_rare_triplets

        self.fp = defaultdict(list)
        self.tp = defaultdict(list)
        self.score = defaultdict(list)
        self.sum_gts = defaultdict(lambda: 0)
        self.gt_triplets = []

        self.preds = []
        for img_preds in preds:
            img_preds = {k: v.to('cpu').numpy() for k, v in img_preds.items() if k != 'hoi_recognition_time'}
            bboxes = [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_preds['boxes'], img_preds['labels'])]
            hoi_scores = img_preds['verb_scores']
            verb_labels = np.tile(np.arange(hoi_scores.shape[1]), (hoi_scores.shape[0], 1))
            subject_ids = np.tile(img_preds['sub_ids'], (hoi_scores.shape[1], 1)).T
            object_ids = np.tile(img_preds['obj_ids'], (hoi_scores.shape[1], 1)).T

            hoi_scores = hoi_scores.ravel()
            verb_labels = verb_labels.ravel()
            subject_ids = subject_ids.ravel()
            object_ids = object_ids.ravel()

            if len(subject_ids) > 0:
                object_labels = np.array([bboxes[object_id]['category_id'] for object_id in object_ids])
                masks = correct_mat[verb_labels, object_labels]
                hoi_scores *= masks

                hois = [{'subject_id': subject_id, 'object_id': object_id, 'category_id': category_id, 'score': score} for
                        subject_id, object_id, category_id, score in zip(subject_ids, object_ids, verb_labels, hoi_scores)]
                hois.sort(key=lambda k: (k.get('score', 0)), reverse=True)
                hois = hois[:self.max_hois]
            else:
                hois = []

            self.preds.append({
                'predictions': bboxes,
                'hoi_prediction': hois
            })

        self.gts = []
        for img_gts in gts:
            img_gts = {k: v.to('cpu').numpy() for k, v in img_gts.items() if k != 'id'}
            self.gts.append({
                'annotations': [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_gts['boxes'], img_gts['labels'])],
                'hoi_annotation': [{'subject_id': hoi[0], 'object_id': hoi[1], 'category_id': hoi[2]} for hoi in img_gts['hois']]
            })
            for hoi in self.gts[-1]['hoi_annotation']:
                triplet = (self.gts[-1]['annotations'][hoi['subject_id']]['category_id'],
                           self.gts[-1]['annotations'][hoi['object_id']]['category_id'],
                           hoi['category_id'])

                if triplet not in self.gt_triplets:
                    self.gt_triplets.append(triplet)

                self.sum_gts[triplet] += 1

    def evaluate(self):
        for img_id, (img_preds, img_gts) in enumerate(zip(self.preds, self.gts)):
            print(f"Evaluating Score Matrix... : [{(img_id+1):>4}/{len(self.gts):<4}]" ,flush=True, end="\r")
            pred_bboxes = img_preds['predictions']
            gt_bboxes = img_gts['annotations']
            pred_hois = img_preds['hoi_prediction']
            gt_hois = img_gts['hoi_annotation']
            if len(gt_bboxes) != 0:
                bbox_pairs, bbox_overlaps = self.compute_iou_mat(gt_bboxes, pred_bboxes)
                self.compute_fptp(pred_hois, gt_hois, bbox_pairs, pred_bboxes, bbox_overlaps)
            else:
                for pred_hoi in pred_hois:
                    triplet = [pred_bboxes[pred_hoi['subject_id']]['category_id'],
                               pred_bboxes[pred_hoi['object_id']]['category_id'], pred_hoi['category_id']]
                    if triplet not in self.gt_triplets:
                        continue
                    self.tp[triplet].append(0)
                    self.fp[triplet].append(1)
                    self.score[triplet].append(pred_hoi['score'])
        print(f"[stats] Score Matrix Generation completed!!          ")
        map = self.compute_map()
        return map

    def compute_map(self):
        ap = defaultdict(lambda: 0)
        rare_ap = defaultdict(lambda: 0)
        non_rare_ap = defaultdict(lambda: 0)
        max_recall = defaultdict(lambda: 0)
        for triplet in self.gt_triplets:
            sum_gts = self.sum_gts[triplet]
            if sum_gts == 0:
                continue

            tp = np.array((self.tp[triplet]))
            fp = np.array((self.fp[triplet]))
            if len(tp) == 0:
                ap[triplet] = 0
                max_recall[triplet] = 0
                if triplet in self.rare_triplets:
                    rare_ap[triplet] = 0
                elif triplet in self.non_rare_triplets:
                    non_rare_ap[triplet] = 0
                else:
                    print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet))
                continue

            score = np.array(self.score[triplet])
            sort_inds = np.argsort(-score)
            fp = fp[sort_inds]
            tp = tp[sort_inds]
            fp = np.cumsum(fp)
            tp = np.cumsum(tp)
            rec = tp / sum_gts
            prec = tp / (fp + tp)
            ap[triplet] = self.voc_ap(rec, prec)
            max_recall[triplet] = np.amax(rec)
            if triplet in self.rare_triplets:
                rare_ap[triplet] = ap[triplet]
            elif triplet in self.non_rare_triplets:
                non_rare_ap[triplet] = ap[triplet]
            else:
                print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet))
        m_ap = np.mean(list(ap.values())) * 100 # percentage
        m_ap_rare = np.mean(list(rare_ap.values())) * 100 # percentage
        m_ap_non_rare = np.mean(list(non_rare_ap.values())) * 100 # percentage
        m_max_recall = np.mean(list(max_recall.values()))

        return {'mAP': m_ap, 'mAP rare': m_ap_rare, 'mAP non-rare': m_ap_non_rare, 'mean max recall': m_max_recall}

    def voc_ap(self, rec, prec):
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
        return ap

    def compute_fptp(self, pred_hois, gt_hois, match_pairs, pred_bboxes, bbox_overlaps):
        pos_pred_ids = match_pairs.keys()
        vis_tag = np.zeros(len(gt_hois))
        pred_hois.sort(key=lambda k: (k.get('score', 0)), reverse=True)
        if len(pred_hois) != 0:
            for pred_hoi in pred_hois:
                is_match = 0
                if len(match_pairs) != 0 and pred_hoi['subject_id'] in pos_pred_ids and pred_hoi['object_id'] in pos_pred_ids:
                    pred_sub_ids = match_pairs[pred_hoi['subject_id']]
                    pred_obj_ids = match_pairs[pred_hoi['object_id']]
                    pred_sub_overlaps = bbox_overlaps[pred_hoi['subject_id']]
                    pred_obj_overlaps = bbox_overlaps[pred_hoi['object_id']]
                    pred_category_id = pred_hoi['category_id']
                    max_overlap = 0
                    max_gt_hoi = 0
                    for gt_hoi in gt_hois:
                        if gt_hoi['subject_id'] in pred_sub_ids and gt_hoi['object_id'] in pred_obj_ids \
                           and pred_category_id == gt_hoi['category_id']:
                            is_match = 1
                            min_overlap_gt = min(pred_sub_overlaps[pred_sub_ids.index(gt_hoi['subject_id'])],
                                                 pred_obj_overlaps[pred_obj_ids.index(gt_hoi['object_id'])])
                            if min_overlap_gt > max_overlap:
                                max_overlap = min_overlap_gt
                                max_gt_hoi = gt_hoi
                triplet = (pred_bboxes[pred_hoi['subject_id']]['category_id'], pred_bboxes[pred_hoi['object_id']]['category_id'],
                           pred_hoi['category_id'])
                if triplet not in self.gt_triplets:
                    continue
                if is_match == 1 and vis_tag[gt_hois.index(max_gt_hoi)] == 0:
                    self.fp[triplet].append(0)
                    self.tp[triplet].append(1)
                    vis_tag[gt_hois.index(max_gt_hoi)] =1
                else:
                    self.fp[triplet].append(1)
                    self.tp[triplet].append(0)
                self.score[triplet].append(pred_hoi['score'])

    def compute_iou_mat(self, bbox_list1, bbox_list2):
        iou_mat = np.zeros((len(bbox_list1), len(bbox_list2)))
        if len(bbox_list1) == 0 or len(bbox_list2) == 0:
            return {}
        for i, bbox1 in enumerate(bbox_list1):
            for j, bbox2 in enumerate(bbox_list2):
                iou_i = self.compute_IOU(bbox1, bbox2)
                iou_mat[i, j] = iou_i

        iou_mat_ov=iou_mat.copy()
        iou_mat[iou_mat>=self.overlap_iou] = 1
        iou_mat[iou_mat<self.overlap_iou] = 0

        match_pairs = np.nonzero(iou_mat)
        match_pairs_dict = {}
        match_pair_overlaps = {}
        if iou_mat.max() > 0:
            for i, pred_id in enumerate(match_pairs[1]):
                if pred_id not in match_pairs_dict.keys():
                    match_pairs_dict[pred_id] = []
                    match_pair_overlaps[pred_id]=[]
                match_pairs_dict[pred_id].append(match_pairs[0][i])
                match_pair_overlaps[pred_id].append(iou_mat_ov[match_pairs[0][i],pred_id])
        return match_pairs_dict, match_pair_overlaps

    def compute_IOU(self, bbox1, bbox2):
        if isinstance(bbox1['category_id'], str):
            bbox1['category_id'] = int(bbox1['category_id'].replace('\n', ''))
        if isinstance(bbox2['category_id'], str):
            bbox2['category_id'] = int(bbox2['category_id'].replace('\n', ''))
        if bbox1['category_id'] == bbox2['category_id']:
            rec1 = bbox1['bbox']
            rec2 = bbox2['bbox']
            # computing area of each rectangles
            S_rec1 = (rec1[2] - rec1[0]+1) * (rec1[3] - rec1[1]+1)
            S_rec2 = (rec2[2] - rec2[0]+1) * (rec2[3] - rec2[1]+1)

            # computing the sum_area
            sum_area = S_rec1 + S_rec2

            # find the each edge of intersect rectangle
            left_line = max(rec1[1], rec2[1])
            right_line = min(rec1[3], rec2[3])
            top_line = max(rec1[0], rec2[0])
            bottom_line = min(rec1[2], rec2[2])
            # judge if there is an intersect
            if left_line >= right_line or top_line >= bottom_line:
                return 0
            else:
                intersect = (right_line - left_line+1) * (bottom_line - top_line+1)
                return intersect / (sum_area - intersect)
        else:
            return 0