Spaces:
Runtime error
Runtime error
File size: 11,550 Bytes
5e0b9df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# ------------------------------------------------------------------------
# HOTR official code : hotr/data/evaluators/hico_eval.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from QPIC (https://github.com/hitachi-rd-cv/qpic)
# Copyright (c) Hitachi, Ltd. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import numpy as np
from collections import defaultdict
class HICOEvaluator():
def __init__(self, preds, gts, rare_triplets, non_rare_triplets, correct_mat):
self.overlap_iou = 0.5
self.max_hois = 100
self.rare_triplets = rare_triplets
self.non_rare_triplets = non_rare_triplets
self.fp = defaultdict(list)
self.tp = defaultdict(list)
self.score = defaultdict(list)
self.sum_gts = defaultdict(lambda: 0)
self.gt_triplets = []
self.preds = []
for img_preds in preds:
img_preds = {k: v.to('cpu').numpy() for k, v in img_preds.items() if k != 'hoi_recognition_time'}
bboxes = [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_preds['boxes'], img_preds['labels'])]
hoi_scores = img_preds['verb_scores']
verb_labels = np.tile(np.arange(hoi_scores.shape[1]), (hoi_scores.shape[0], 1))
subject_ids = np.tile(img_preds['sub_ids'], (hoi_scores.shape[1], 1)).T
object_ids = np.tile(img_preds['obj_ids'], (hoi_scores.shape[1], 1)).T
hoi_scores = hoi_scores.ravel()
verb_labels = verb_labels.ravel()
subject_ids = subject_ids.ravel()
object_ids = object_ids.ravel()
if len(subject_ids) > 0:
object_labels = np.array([bboxes[object_id]['category_id'] for object_id in object_ids])
masks = correct_mat[verb_labels, object_labels]
hoi_scores *= masks
hois = [{'subject_id': subject_id, 'object_id': object_id, 'category_id': category_id, 'score': score} for
subject_id, object_id, category_id, score in zip(subject_ids, object_ids, verb_labels, hoi_scores)]
hois.sort(key=lambda k: (k.get('score', 0)), reverse=True)
hois = hois[:self.max_hois]
else:
hois = []
self.preds.append({
'predictions': bboxes,
'hoi_prediction': hois
})
self.gts = []
for img_gts in gts:
img_gts = {k: v.to('cpu').numpy() for k, v in img_gts.items() if k != 'id'}
self.gts.append({
'annotations': [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_gts['boxes'], img_gts['labels'])],
'hoi_annotation': [{'subject_id': hoi[0], 'object_id': hoi[1], 'category_id': hoi[2]} for hoi in img_gts['hois']]
})
for hoi in self.gts[-1]['hoi_annotation']:
triplet = (self.gts[-1]['annotations'][hoi['subject_id']]['category_id'],
self.gts[-1]['annotations'][hoi['object_id']]['category_id'],
hoi['category_id'])
if triplet not in self.gt_triplets:
self.gt_triplets.append(triplet)
self.sum_gts[triplet] += 1
def evaluate(self):
for img_id, (img_preds, img_gts) in enumerate(zip(self.preds, self.gts)):
print(f"Evaluating Score Matrix... : [{(img_id+1):>4}/{len(self.gts):<4}]" ,flush=True, end="\r")
pred_bboxes = img_preds['predictions']
gt_bboxes = img_gts['annotations']
pred_hois = img_preds['hoi_prediction']
gt_hois = img_gts['hoi_annotation']
if len(gt_bboxes) != 0:
bbox_pairs, bbox_overlaps = self.compute_iou_mat(gt_bboxes, pred_bboxes)
self.compute_fptp(pred_hois, gt_hois, bbox_pairs, pred_bboxes, bbox_overlaps)
else:
for pred_hoi in pred_hois:
triplet = [pred_bboxes[pred_hoi['subject_id']]['category_id'],
pred_bboxes[pred_hoi['object_id']]['category_id'], pred_hoi['category_id']]
if triplet not in self.gt_triplets:
continue
self.tp[triplet].append(0)
self.fp[triplet].append(1)
self.score[triplet].append(pred_hoi['score'])
print(f"[stats] Score Matrix Generation completed!! ")
map = self.compute_map()
return map
def compute_map(self):
ap = defaultdict(lambda: 0)
rare_ap = defaultdict(lambda: 0)
non_rare_ap = defaultdict(lambda: 0)
max_recall = defaultdict(lambda: 0)
for triplet in self.gt_triplets:
sum_gts = self.sum_gts[triplet]
if sum_gts == 0:
continue
tp = np.array((self.tp[triplet]))
fp = np.array((self.fp[triplet]))
if len(tp) == 0:
ap[triplet] = 0
max_recall[triplet] = 0
if triplet in self.rare_triplets:
rare_ap[triplet] = 0
elif triplet in self.non_rare_triplets:
non_rare_ap[triplet] = 0
else:
print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet))
continue
score = np.array(self.score[triplet])
sort_inds = np.argsort(-score)
fp = fp[sort_inds]
tp = tp[sort_inds]
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / sum_gts
prec = tp / (fp + tp)
ap[triplet] = self.voc_ap(rec, prec)
max_recall[triplet] = np.amax(rec)
if triplet in self.rare_triplets:
rare_ap[triplet] = ap[triplet]
elif triplet in self.non_rare_triplets:
non_rare_ap[triplet] = ap[triplet]
else:
print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet))
m_ap = np.mean(list(ap.values())) * 100 # percentage
m_ap_rare = np.mean(list(rare_ap.values())) * 100 # percentage
m_ap_non_rare = np.mean(list(non_rare_ap.values())) * 100 # percentage
m_max_recall = np.mean(list(max_recall.values()))
return {'mAP': m_ap, 'mAP rare': m_ap_rare, 'mAP non-rare': m_ap_non_rare, 'mean max recall': m_max_recall}
def voc_ap(self, rec, prec):
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
return ap
def compute_fptp(self, pred_hois, gt_hois, match_pairs, pred_bboxes, bbox_overlaps):
pos_pred_ids = match_pairs.keys()
vis_tag = np.zeros(len(gt_hois))
pred_hois.sort(key=lambda k: (k.get('score', 0)), reverse=True)
if len(pred_hois) != 0:
for pred_hoi in pred_hois:
is_match = 0
if len(match_pairs) != 0 and pred_hoi['subject_id'] in pos_pred_ids and pred_hoi['object_id'] in pos_pred_ids:
pred_sub_ids = match_pairs[pred_hoi['subject_id']]
pred_obj_ids = match_pairs[pred_hoi['object_id']]
pred_sub_overlaps = bbox_overlaps[pred_hoi['subject_id']]
pred_obj_overlaps = bbox_overlaps[pred_hoi['object_id']]
pred_category_id = pred_hoi['category_id']
max_overlap = 0
max_gt_hoi = 0
for gt_hoi in gt_hois:
if gt_hoi['subject_id'] in pred_sub_ids and gt_hoi['object_id'] in pred_obj_ids \
and pred_category_id == gt_hoi['category_id']:
is_match = 1
min_overlap_gt = min(pred_sub_overlaps[pred_sub_ids.index(gt_hoi['subject_id'])],
pred_obj_overlaps[pred_obj_ids.index(gt_hoi['object_id'])])
if min_overlap_gt > max_overlap:
max_overlap = min_overlap_gt
max_gt_hoi = gt_hoi
triplet = (pred_bboxes[pred_hoi['subject_id']]['category_id'], pred_bboxes[pred_hoi['object_id']]['category_id'],
pred_hoi['category_id'])
if triplet not in self.gt_triplets:
continue
if is_match == 1 and vis_tag[gt_hois.index(max_gt_hoi)] == 0:
self.fp[triplet].append(0)
self.tp[triplet].append(1)
vis_tag[gt_hois.index(max_gt_hoi)] =1
else:
self.fp[triplet].append(1)
self.tp[triplet].append(0)
self.score[triplet].append(pred_hoi['score'])
def compute_iou_mat(self, bbox_list1, bbox_list2):
iou_mat = np.zeros((len(bbox_list1), len(bbox_list2)))
if len(bbox_list1) == 0 or len(bbox_list2) == 0:
return {}
for i, bbox1 in enumerate(bbox_list1):
for j, bbox2 in enumerate(bbox_list2):
iou_i = self.compute_IOU(bbox1, bbox2)
iou_mat[i, j] = iou_i
iou_mat_ov=iou_mat.copy()
iou_mat[iou_mat>=self.overlap_iou] = 1
iou_mat[iou_mat<self.overlap_iou] = 0
match_pairs = np.nonzero(iou_mat)
match_pairs_dict = {}
match_pair_overlaps = {}
if iou_mat.max() > 0:
for i, pred_id in enumerate(match_pairs[1]):
if pred_id not in match_pairs_dict.keys():
match_pairs_dict[pred_id] = []
match_pair_overlaps[pred_id]=[]
match_pairs_dict[pred_id].append(match_pairs[0][i])
match_pair_overlaps[pred_id].append(iou_mat_ov[match_pairs[0][i],pred_id])
return match_pairs_dict, match_pair_overlaps
def compute_IOU(self, bbox1, bbox2):
if isinstance(bbox1['category_id'], str):
bbox1['category_id'] = int(bbox1['category_id'].replace('\n', ''))
if isinstance(bbox2['category_id'], str):
bbox2['category_id'] = int(bbox2['category_id'].replace('\n', ''))
if bbox1['category_id'] == bbox2['category_id']:
rec1 = bbox1['bbox']
rec2 = bbox2['bbox']
# computing area of each rectangles
S_rec1 = (rec1[2] - rec1[0]+1) * (rec1[3] - rec1[1]+1)
S_rec2 = (rec2[2] - rec2[0]+1) * (rec2[3] - rec2[1]+1)
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
# judge if there is an intersect
if left_line >= right_line or top_line >= bottom_line:
return 0
else:
intersect = (right_line - left_line+1) * (bottom_line - top_line+1)
return intersect / (sum_area - intersect)
else:
return 0 |