# ------------------------------------------------------------------------ # HOTR official code : hotr/data/evaluators/hico_eval.py # Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ # Modified from QPIC (https://github.com/hitachi-rd-cv/qpic) # Copyright (c) Hitachi, Ltd. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ import numpy as np from collections import defaultdict class HICOEvaluator(): def __init__(self, preds, gts, rare_triplets, non_rare_triplets, correct_mat): self.overlap_iou = 0.5 self.max_hois = 100 self.rare_triplets = rare_triplets self.non_rare_triplets = non_rare_triplets self.fp = defaultdict(list) self.tp = defaultdict(list) self.score = defaultdict(list) self.sum_gts = defaultdict(lambda: 0) self.gt_triplets = [] self.preds = [] for img_preds in preds: img_preds = {k: v.to('cpu').numpy() for k, v in img_preds.items() if k != 'hoi_recognition_time'} bboxes = [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_preds['boxes'], img_preds['labels'])] hoi_scores = img_preds['verb_scores'] verb_labels = np.tile(np.arange(hoi_scores.shape[1]), (hoi_scores.shape[0], 1)) subject_ids = np.tile(img_preds['sub_ids'], (hoi_scores.shape[1], 1)).T object_ids = np.tile(img_preds['obj_ids'], (hoi_scores.shape[1], 1)).T hoi_scores = hoi_scores.ravel() verb_labels = verb_labels.ravel() subject_ids = subject_ids.ravel() object_ids = object_ids.ravel() if len(subject_ids) > 0: object_labels = np.array([bboxes[object_id]['category_id'] for object_id in object_ids]) masks = correct_mat[verb_labels, object_labels] hoi_scores *= masks hois = [{'subject_id': subject_id, 'object_id': object_id, 'category_id': category_id, 'score': score} for subject_id, object_id, category_id, score in zip(subject_ids, object_ids, verb_labels, hoi_scores)] hois.sort(key=lambda k: (k.get('score', 0)), reverse=True) hois = hois[:self.max_hois] else: hois = [] self.preds.append({ 'predictions': bboxes, 'hoi_prediction': hois }) self.gts = [] for img_gts in gts: img_gts = {k: v.to('cpu').numpy() for k, v in img_gts.items() if k != 'id'} self.gts.append({ 'annotations': [{'bbox': bbox, 'category_id': label} for bbox, label in zip(img_gts['boxes'], img_gts['labels'])], 'hoi_annotation': [{'subject_id': hoi[0], 'object_id': hoi[1], 'category_id': hoi[2]} for hoi in img_gts['hois']] }) for hoi in self.gts[-1]['hoi_annotation']: triplet = (self.gts[-1]['annotations'][hoi['subject_id']]['category_id'], self.gts[-1]['annotations'][hoi['object_id']]['category_id'], hoi['category_id']) if triplet not in self.gt_triplets: self.gt_triplets.append(triplet) self.sum_gts[triplet] += 1 def evaluate(self): for img_id, (img_preds, img_gts) in enumerate(zip(self.preds, self.gts)): print(f"Evaluating Score Matrix... : [{(img_id+1):>4}/{len(self.gts):<4}]" ,flush=True, end="\r") pred_bboxes = img_preds['predictions'] gt_bboxes = img_gts['annotations'] pred_hois = img_preds['hoi_prediction'] gt_hois = img_gts['hoi_annotation'] if len(gt_bboxes) != 0: bbox_pairs, bbox_overlaps = self.compute_iou_mat(gt_bboxes, pred_bboxes) self.compute_fptp(pred_hois, gt_hois, bbox_pairs, pred_bboxes, bbox_overlaps) else: for pred_hoi in pred_hois: triplet = [pred_bboxes[pred_hoi['subject_id']]['category_id'], pred_bboxes[pred_hoi['object_id']]['category_id'], pred_hoi['category_id']] if triplet not in self.gt_triplets: continue self.tp[triplet].append(0) self.fp[triplet].append(1) self.score[triplet].append(pred_hoi['score']) print(f"[stats] Score Matrix Generation completed!! ") map = self.compute_map() return map def compute_map(self): ap = defaultdict(lambda: 0) rare_ap = defaultdict(lambda: 0) non_rare_ap = defaultdict(lambda: 0) max_recall = defaultdict(lambda: 0) for triplet in self.gt_triplets: sum_gts = self.sum_gts[triplet] if sum_gts == 0: continue tp = np.array((self.tp[triplet])) fp = np.array((self.fp[triplet])) if len(tp) == 0: ap[triplet] = 0 max_recall[triplet] = 0 if triplet in self.rare_triplets: rare_ap[triplet] = 0 elif triplet in self.non_rare_triplets: non_rare_ap[triplet] = 0 else: print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet)) continue score = np.array(self.score[triplet]) sort_inds = np.argsort(-score) fp = fp[sort_inds] tp = tp[sort_inds] fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / sum_gts prec = tp / (fp + tp) ap[triplet] = self.voc_ap(rec, prec) max_recall[triplet] = np.amax(rec) if triplet in self.rare_triplets: rare_ap[triplet] = ap[triplet] elif triplet in self.non_rare_triplets: non_rare_ap[triplet] = ap[triplet] else: print('Warning: triplet {} is neither in rare triplets nor in non-rare triplets'.format(triplet)) m_ap = np.mean(list(ap.values())) * 100 # percentage m_ap_rare = np.mean(list(rare_ap.values())) * 100 # percentage m_ap_non_rare = np.mean(list(non_rare_ap.values())) * 100 # percentage m_max_recall = np.mean(list(max_recall.values())) return {'mAP': m_ap, 'mAP rare': m_ap_rare, 'mAP non-rare': m_ap_non_rare, 'mean max recall': m_max_recall} def voc_ap(self, rec, prec): ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. return ap def compute_fptp(self, pred_hois, gt_hois, match_pairs, pred_bboxes, bbox_overlaps): pos_pred_ids = match_pairs.keys() vis_tag = np.zeros(len(gt_hois)) pred_hois.sort(key=lambda k: (k.get('score', 0)), reverse=True) if len(pred_hois) != 0: for pred_hoi in pred_hois: is_match = 0 if len(match_pairs) != 0 and pred_hoi['subject_id'] in pos_pred_ids and pred_hoi['object_id'] in pos_pred_ids: pred_sub_ids = match_pairs[pred_hoi['subject_id']] pred_obj_ids = match_pairs[pred_hoi['object_id']] pred_sub_overlaps = bbox_overlaps[pred_hoi['subject_id']] pred_obj_overlaps = bbox_overlaps[pred_hoi['object_id']] pred_category_id = pred_hoi['category_id'] max_overlap = 0 max_gt_hoi = 0 for gt_hoi in gt_hois: if gt_hoi['subject_id'] in pred_sub_ids and gt_hoi['object_id'] in pred_obj_ids \ and pred_category_id == gt_hoi['category_id']: is_match = 1 min_overlap_gt = min(pred_sub_overlaps[pred_sub_ids.index(gt_hoi['subject_id'])], pred_obj_overlaps[pred_obj_ids.index(gt_hoi['object_id'])]) if min_overlap_gt > max_overlap: max_overlap = min_overlap_gt max_gt_hoi = gt_hoi triplet = (pred_bboxes[pred_hoi['subject_id']]['category_id'], pred_bboxes[pred_hoi['object_id']]['category_id'], pred_hoi['category_id']) if triplet not in self.gt_triplets: continue if is_match == 1 and vis_tag[gt_hois.index(max_gt_hoi)] == 0: self.fp[triplet].append(0) self.tp[triplet].append(1) vis_tag[gt_hois.index(max_gt_hoi)] =1 else: self.fp[triplet].append(1) self.tp[triplet].append(0) self.score[triplet].append(pred_hoi['score']) def compute_iou_mat(self, bbox_list1, bbox_list2): iou_mat = np.zeros((len(bbox_list1), len(bbox_list2))) if len(bbox_list1) == 0 or len(bbox_list2) == 0: return {} for i, bbox1 in enumerate(bbox_list1): for j, bbox2 in enumerate(bbox_list2): iou_i = self.compute_IOU(bbox1, bbox2) iou_mat[i, j] = iou_i iou_mat_ov=iou_mat.copy() iou_mat[iou_mat>=self.overlap_iou] = 1 iou_mat[iou_mat 0: for i, pred_id in enumerate(match_pairs[1]): if pred_id not in match_pairs_dict.keys(): match_pairs_dict[pred_id] = [] match_pair_overlaps[pred_id]=[] match_pairs_dict[pred_id].append(match_pairs[0][i]) match_pair_overlaps[pred_id].append(iou_mat_ov[match_pairs[0][i],pred_id]) return match_pairs_dict, match_pair_overlaps def compute_IOU(self, bbox1, bbox2): if isinstance(bbox1['category_id'], str): bbox1['category_id'] = int(bbox1['category_id'].replace('\n', '')) if isinstance(bbox2['category_id'], str): bbox2['category_id'] = int(bbox2['category_id'].replace('\n', '')) if bbox1['category_id'] == bbox2['category_id']: rec1 = bbox1['bbox'] rec2 = bbox2['bbox'] # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]+1) * (rec1[3] - rec1[1]+1) S_rec2 = (rec2[2] - rec2[0]+1) * (rec2[3] - rec2[1]+1) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0 else: intersect = (right_line - left_line+1) * (bottom_line - top_line+1) return intersect / (sum_area - intersect) else: return 0