Liusuthu's picture
Upload folder using huggingface_hub
890de26 verified
raw
history blame
15.4 kB
# -*- coding:utf-8 -*-
# @FileName :ortruntimeSession.py
# @Time :2023/8/8 20:20
# @Author :lovemefan
# @Email :[email protected]
import io
import logging
import re
import warnings
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Union
import jieba
import numpy as np
import yaml
from onnxruntime import (GraphOptimizationLevel, InferenceSession,
SessionOptions, get_available_providers, get_device)
from paraformer.runtime.python.utils.singleton import singleton
root_dir = Path(__file__).resolve().parent
class TokenIDConverter:
def __init__(
self,
token_list: Union[List, str],
):
self.token_list = token_list
self.unk_symbol = token_list[-1]
self.token2id = {v: i for i, v in enumerate(self.token_list)}
self.unk_id = self.token2id[self.unk_symbol]
def get_num_vocabulary_size(self) -> int:
return len(self.token_list)
def ids2tokens(self, integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
if isinstance(integers, np.ndarray) and integers.ndim != 1:
raise TokenIDConverterError(
f"Must be 1 dim ndarray, but got {integers.ndim}"
)
return [self.token_list[i] for i in integers]
def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
return [self.token2id.get(i, self.unk_id) for i in tokens]
class CharTokenizer:
def __init__(
self,
symbol_value: Union[Path, str, Iterable[str]] = None,
space_symbol: str = "<space>",
remove_non_linguistic_symbols: bool = False,
):
self.space_symbol = space_symbol
self.non_linguistic_symbols = self.load_symbols(symbol_value)
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
@staticmethod
def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
if value is None:
return set()
if isinstance(value, Iterable):
return set(value)
file_path = Path(value)
if not file_path.exists():
logging.warning("%s doesn't exist.", file_path)
return set()
with file_path.open("r", encoding="utf-8") as f:
return set(line.rstrip() for line in f)
def text2tokens(self, line: Union[str, list]) -> List[str]:
tokens = []
while len(line) != 0:
for w in self.non_linguistic_symbols:
if line.startswith(w):
if not self.remove_non_linguistic_symbols:
tokens.append(line[: len(w)])
line = line[len(w) :]
break
else:
t = line[0]
if t == " ":
t = "<space>"
tokens.append(t)
line = line[1:]
return tokens
def tokens2text(self, tokens: Iterable[str]) -> str:
tokens = [t if t != self.space_symbol else " " for t in tokens]
return "".join(tokens)
def __repr__(self):
return (
f"{self.__class__.__name__}("
f'space_symbol="{self.space_symbol}"'
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
f")"
)
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: np.ndarray
score: Union[float, np.ndarray] = 0
scores: Dict[str, Union[float, np.ndarray]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v) for k, v in self.scores.items()},
)._asdict()
class TokenIDConverterError(Exception):
pass
class ONNXRuntimeError(Exception):
pass
class AsrOnlineBaseOrtInferRuntimeSession:
def __init__(self, model_file, device_id=-1, intra_op_num_threads=4):
device_id = str(device_id)
sess_opt = SessionOptions()
sess_opt.intra_op_num_threads = intra_op_num_threads
sess_opt.log_severity_level = 4
sess_opt.enable_cpu_mem_arena = False
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
cuda_ep = "CUDAExecutionProvider"
cuda_provider_options = {
"device_id": device_id,
"arena_extend_strategy": "kNextPowerOfTwo",
"cudnn_conv_algo_search": "EXHAUSTIVE",
"do_copy_in_default_stream": "true",
}
cpu_ep = "CPUExecutionProvider"
cpu_provider_options = {
"arena_extend_strategy": "kSameAsRequested",
}
EP_list = []
if (
device_id != "-1"
and get_device() == "GPU"
and cuda_ep in get_available_providers()
):
EP_list = [(cuda_ep, cuda_provider_options)]
EP_list.append((cpu_ep, cpu_provider_options))
if isinstance(model_file, list):
merged_model_file = b""
for file in sorted(model_file):
with open(file, "rb") as onnx_file:
merged_model_file += onnx_file.read()
model_file = merged_model_file
else:
self._verify_model(model_file)
self.session = InferenceSession(
model_file, sess_options=sess_opt, providers=EP_list
)
if device_id != "-1" and cuda_ep not in self.session.get_providers():
warnings.warn(
f"{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n"
"Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, "
"you can check their relations from the offical web site: "
"https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html",
RuntimeWarning,
)
def __call__(
self, input_content: List[Union[np.ndarray, np.ndarray]]
) -> np.ndarray:
input_dict = dict(zip(self.get_input_names(), input_content))
try:
result = self.session.run(self.get_output_names(), input_dict)
return result
except Exception as e:
raise ONNXRuntimeError("ONNXRuntime inferece failed.") from e
def get_input_names(
self,
):
return [v.name for v in self.session.get_inputs()]
def get_output_names(
self,
):
return [v.name for v in self.session.get_outputs()]
def get_character_list(self, key: str = "character"):
return self.meta_dict[key].splitlines()
def have_key(self, key: str = "character") -> bool:
self.meta_dict = self.session.get_modelmeta().custom_metadata_map
if key in self.meta_dict.keys():
return True
return False
@staticmethod
def _verify_model(model_path):
model_path = Path(model_path)
if not model_path.exists():
raise FileNotFoundError(f"{model_path} does not exists.")
if not model_path.is_file():
raise FileExistsError(f"{model_path} is not a file.")
@singleton
class AsrOnlineEncoderOrtInferRuntimeSession(AsrOnlineBaseOrtInferRuntimeSession):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@singleton
class AsrOnlineDecoderOrtInferRuntimeSession(AsrOnlineBaseOrtInferRuntimeSession):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@singleton
class AsrOfflineOrtInferRuntimeSession:
def __init__(
self, model_file, contextual_model, device_id=-1, intra_op_num_threads=4
):
sess_opt = SessionOptions()
sess_opt.log_severity_level = 4
sess_opt.intra_op_num_threads = intra_op_num_threads
sess_opt.enable_cpu_mem_arena = False
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
cuda_ep = "CUDAExecutionProvider"
cuda_provider_options = {
"device_id": device_id,
"arena_extend_strategy": "kNextPowerOfTwo",
"cudnn_conv_algo_search": "EXHAUSTIVE",
"do_copy_in_default_stream": "true",
}
cpu_ep = "CPUExecutionProvider"
cpu_provider_options = {
"arena_extend_strategy": "kSameAsRequested",
}
EP_list = []
if (
device_id != "-1"
and get_device() == "GPU"
and cuda_ep in get_available_providers()
):
EP_list = [(cuda_ep, cuda_provider_options)]
EP_list.append((cpu_ep, cpu_provider_options))
if isinstance(model_file, list):
merged_model_file = b""
for file in sorted(model_file):
with open(file, "rb") as onnx_file:
merged_model_file += onnx_file.read()
model_file = merged_model_file
else:
self._verify_model(model_file)
self.session = InferenceSession(
model_file, sess_options=sess_opt, providers=EP_list
)
self.contextual_model = InferenceSession(
contextual_model, sess_options=sess_opt, providers=EP_list
)
if device_id != "-1" and cuda_ep not in self.session.get_providers():
logging.warning(
f"{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n"
"Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, "
"you can check their relations from the offical web site: "
"https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html"
)
def __call__(
self,
# feats: Union[np.ndarray],
# feats_length: Union[np.ndarray],
feats: np.ndarray,
feats_length: np.ndarray,
bias_embed: np.ndarray = None,
) -> np.ndarray:
"""
Args:
feats: numpy.ndarray , [batch size , feats length, dim ] batch only support 1, dim is 560
feats_length: numpy.ndarray, [feats length]
bias_embed: numpy.ndarray, [batch size, max string length, dim]
batch only support 1, max string length is 10, dim is 512
Returns:
"""
input_dict = dict(
zip(self.get_asr_input_names(), (feats, feats_length, bias_embed))
)
return self.session.run(None, input_dict)[0]
def get_hot_words_embedding(self):
pass
def get_asr_input_names(
self,
):
return [v.name for v in self.session.get_inputs()]
def get_contextual_model_input_names(
self,
):
return [v.name for v in self.contextual_model.get_inputs()]
def get_output_names(
self,
):
return [v.name for v in self.session.get_outputs()]
def get_character_list(self, key: str = "character"):
return self.meta_dict[key].splitlines()
def have_key(self, key: str = "character") -> bool:
self.meta_dict = self.session.get_modelmeta().custom_metadata_map
if key in self.meta_dict.keys():
return True
return False
@staticmethod
def _verify_model(model_path):
model_path = Path(model_path)
if not model_path.exists():
raise FileNotFoundError(f"{model_path} does not exists.")
if not model_path.is_file():
raise FileExistsError(f"{model_path} is not a file.")
def proc_hot_word(self, hot_words):
hot_words_length = [len(i) - 1 for i in hot_words]
hot_words_length.append(0)
hot_words_length = np.array(hot_words_length)
# hotwords.append('<s>')
def word_map(word):
return np.array([self.vocab[i] for i in word])
hot_word_int = [word_map(i) for i in hot_words]
hot_word_int.append(np.array([1]))
n_batch = len(hot_word_int)
hot_words = np.zeros((n_batch, 10, *hot_word_int[0].size()[1:]))
for i in range(n_batch):
hot_words[i, : hot_word_int[i].size(0)] = hot_word_int[i]
return hot_words, hot_words_length
def split_to_mini_sentence(words: list, word_limit: int = 20):
assert word_limit > 1
if len(words) <= word_limit:
return [words]
sentences = []
length = len(words)
sentence_len = length // word_limit
for i in range(sentence_len):
sentences.append(words[i * word_limit : (i + 1) * word_limit])
if length % word_limit > 0:
sentences.append(words[sentence_len * word_limit :])
return sentences
def code_mix_split_words(text: str):
words = []
segs = text.split()
for seg in segs:
# There is no space in seg.
current_word = ""
for c in seg:
if len(c.encode()) == 1:
# This is an ASCII char.
current_word += c
else:
# This is a Chinese char.
if len(current_word) > 0:
words.append(current_word)
current_word = ""
words.append(c)
if len(current_word) > 0:
words.append(current_word)
return words
def isEnglish(text: str):
if re.search("^[a-zA-Z']+$", text):
return True
else:
return False
def join_chinese_and_english(input_list):
line = ""
for token in input_list:
if isEnglish(token):
line = line + " " + token
else:
line = line + token
line = line.strip()
return line
def code_mix_split_words_jieba(seg_dict_file: str):
jieba.load_userdict(seg_dict_file)
def _fn(text: str):
input_list = text.split()
token_list_all = []
langauge_list = []
token_list_tmp = []
language_flag = None
for token in input_list:
if isEnglish(token) and language_flag == "Chinese":
token_list_all.append(token_list_tmp)
langauge_list.append("Chinese")
token_list_tmp = []
elif not isEnglish(token) and language_flag == "English":
token_list_all.append(token_list_tmp)
langauge_list.append("English")
token_list_tmp = []
token_list_tmp.append(token)
if isEnglish(token):
language_flag = "English"
else:
language_flag = "Chinese"
if token_list_tmp:
token_list_all.append(token_list_tmp)
langauge_list.append(language_flag)
result_list = []
for token_list_tmp, language_flag in zip(token_list_all, langauge_list):
if language_flag == "English":
result_list.extend(token_list_tmp)
else:
seg_list = jieba.cut(
join_chinese_and_english(token_list_tmp), HMM=False
)
result_list.extend(seg_list)
return result_list
return _fn
def read_yaml(yaml_path: Union[str, Path]) -> Dict:
if not Path(yaml_path).exists():
raise FileExistsError(f"The {yaml_path} does not exist.")
with open(str(yaml_path), "rb") as f:
data = yaml.load(f, Loader=yaml.Loader)
return data