Spaces:
Runtime error
Runtime error
File size: 15,441 Bytes
890de26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
# -*- coding:utf-8 -*-
# @FileName :ortruntimeSession.py
# @Time :2023/8/8 20:20
# @Author :lovemefan
# @Email :[email protected]
import io
import logging
import re
import warnings
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Union
import jieba
import numpy as np
import yaml
from onnxruntime import (GraphOptimizationLevel, InferenceSession,
SessionOptions, get_available_providers, get_device)
from paraformer.runtime.python.utils.singleton import singleton
root_dir = Path(__file__).resolve().parent
class TokenIDConverter:
def __init__(
self,
token_list: Union[List, str],
):
self.token_list = token_list
self.unk_symbol = token_list[-1]
self.token2id = {v: i for i, v in enumerate(self.token_list)}
self.unk_id = self.token2id[self.unk_symbol]
def get_num_vocabulary_size(self) -> int:
return len(self.token_list)
def ids2tokens(self, integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
if isinstance(integers, np.ndarray) and integers.ndim != 1:
raise TokenIDConverterError(
f"Must be 1 dim ndarray, but got {integers.ndim}"
)
return [self.token_list[i] for i in integers]
def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
return [self.token2id.get(i, self.unk_id) for i in tokens]
class CharTokenizer:
def __init__(
self,
symbol_value: Union[Path, str, Iterable[str]] = None,
space_symbol: str = "<space>",
remove_non_linguistic_symbols: bool = False,
):
self.space_symbol = space_symbol
self.non_linguistic_symbols = self.load_symbols(symbol_value)
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
@staticmethod
def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
if value is None:
return set()
if isinstance(value, Iterable):
return set(value)
file_path = Path(value)
if not file_path.exists():
logging.warning("%s doesn't exist.", file_path)
return set()
with file_path.open("r", encoding="utf-8") as f:
return set(line.rstrip() for line in f)
def text2tokens(self, line: Union[str, list]) -> List[str]:
tokens = []
while len(line) != 0:
for w in self.non_linguistic_symbols:
if line.startswith(w):
if not self.remove_non_linguistic_symbols:
tokens.append(line[: len(w)])
line = line[len(w) :]
break
else:
t = line[0]
if t == " ":
t = "<space>"
tokens.append(t)
line = line[1:]
return tokens
def tokens2text(self, tokens: Iterable[str]) -> str:
tokens = [t if t != self.space_symbol else " " for t in tokens]
return "".join(tokens)
def __repr__(self):
return (
f"{self.__class__.__name__}("
f'space_symbol="{self.space_symbol}"'
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
f")"
)
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: np.ndarray
score: Union[float, np.ndarray] = 0
scores: Dict[str, Union[float, np.ndarray]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v) for k, v in self.scores.items()},
)._asdict()
class TokenIDConverterError(Exception):
pass
class ONNXRuntimeError(Exception):
pass
class AsrOnlineBaseOrtInferRuntimeSession:
def __init__(self, model_file, device_id=-1, intra_op_num_threads=4):
device_id = str(device_id)
sess_opt = SessionOptions()
sess_opt.intra_op_num_threads = intra_op_num_threads
sess_opt.log_severity_level = 4
sess_opt.enable_cpu_mem_arena = False
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
cuda_ep = "CUDAExecutionProvider"
cuda_provider_options = {
"device_id": device_id,
"arena_extend_strategy": "kNextPowerOfTwo",
"cudnn_conv_algo_search": "EXHAUSTIVE",
"do_copy_in_default_stream": "true",
}
cpu_ep = "CPUExecutionProvider"
cpu_provider_options = {
"arena_extend_strategy": "kSameAsRequested",
}
EP_list = []
if (
device_id != "-1"
and get_device() == "GPU"
and cuda_ep in get_available_providers()
):
EP_list = [(cuda_ep, cuda_provider_options)]
EP_list.append((cpu_ep, cpu_provider_options))
if isinstance(model_file, list):
merged_model_file = b""
for file in sorted(model_file):
with open(file, "rb") as onnx_file:
merged_model_file += onnx_file.read()
model_file = merged_model_file
else:
self._verify_model(model_file)
self.session = InferenceSession(
model_file, sess_options=sess_opt, providers=EP_list
)
if device_id != "-1" and cuda_ep not in self.session.get_providers():
warnings.warn(
f"{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n"
"Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, "
"you can check their relations from the offical web site: "
"https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html",
RuntimeWarning,
)
def __call__(
self, input_content: List[Union[np.ndarray, np.ndarray]]
) -> np.ndarray:
input_dict = dict(zip(self.get_input_names(), input_content))
try:
result = self.session.run(self.get_output_names(), input_dict)
return result
except Exception as e:
raise ONNXRuntimeError("ONNXRuntime inferece failed.") from e
def get_input_names(
self,
):
return [v.name for v in self.session.get_inputs()]
def get_output_names(
self,
):
return [v.name for v in self.session.get_outputs()]
def get_character_list(self, key: str = "character"):
return self.meta_dict[key].splitlines()
def have_key(self, key: str = "character") -> bool:
self.meta_dict = self.session.get_modelmeta().custom_metadata_map
if key in self.meta_dict.keys():
return True
return False
@staticmethod
def _verify_model(model_path):
model_path = Path(model_path)
if not model_path.exists():
raise FileNotFoundError(f"{model_path} does not exists.")
if not model_path.is_file():
raise FileExistsError(f"{model_path} is not a file.")
@singleton
class AsrOnlineEncoderOrtInferRuntimeSession(AsrOnlineBaseOrtInferRuntimeSession):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@singleton
class AsrOnlineDecoderOrtInferRuntimeSession(AsrOnlineBaseOrtInferRuntimeSession):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@singleton
class AsrOfflineOrtInferRuntimeSession:
def __init__(
self, model_file, contextual_model, device_id=-1, intra_op_num_threads=4
):
sess_opt = SessionOptions()
sess_opt.log_severity_level = 4
sess_opt.intra_op_num_threads = intra_op_num_threads
sess_opt.enable_cpu_mem_arena = False
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
cuda_ep = "CUDAExecutionProvider"
cuda_provider_options = {
"device_id": device_id,
"arena_extend_strategy": "kNextPowerOfTwo",
"cudnn_conv_algo_search": "EXHAUSTIVE",
"do_copy_in_default_stream": "true",
}
cpu_ep = "CPUExecutionProvider"
cpu_provider_options = {
"arena_extend_strategy": "kSameAsRequested",
}
EP_list = []
if (
device_id != "-1"
and get_device() == "GPU"
and cuda_ep in get_available_providers()
):
EP_list = [(cuda_ep, cuda_provider_options)]
EP_list.append((cpu_ep, cpu_provider_options))
if isinstance(model_file, list):
merged_model_file = b""
for file in sorted(model_file):
with open(file, "rb") as onnx_file:
merged_model_file += onnx_file.read()
model_file = merged_model_file
else:
self._verify_model(model_file)
self.session = InferenceSession(
model_file, sess_options=sess_opt, providers=EP_list
)
self.contextual_model = InferenceSession(
contextual_model, sess_options=sess_opt, providers=EP_list
)
if device_id != "-1" and cuda_ep not in self.session.get_providers():
logging.warning(
f"{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n"
"Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, "
"you can check their relations from the offical web site: "
"https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html"
)
def __call__(
self,
# feats: Union[np.ndarray],
# feats_length: Union[np.ndarray],
feats: np.ndarray,
feats_length: np.ndarray,
bias_embed: np.ndarray = None,
) -> np.ndarray:
"""
Args:
feats: numpy.ndarray , [batch size , feats length, dim ] batch only support 1, dim is 560
feats_length: numpy.ndarray, [feats length]
bias_embed: numpy.ndarray, [batch size, max string length, dim]
batch only support 1, max string length is 10, dim is 512
Returns:
"""
input_dict = dict(
zip(self.get_asr_input_names(), (feats, feats_length, bias_embed))
)
return self.session.run(None, input_dict)[0]
def get_hot_words_embedding(self):
pass
def get_asr_input_names(
self,
):
return [v.name for v in self.session.get_inputs()]
def get_contextual_model_input_names(
self,
):
return [v.name for v in self.contextual_model.get_inputs()]
def get_output_names(
self,
):
return [v.name for v in self.session.get_outputs()]
def get_character_list(self, key: str = "character"):
return self.meta_dict[key].splitlines()
def have_key(self, key: str = "character") -> bool:
self.meta_dict = self.session.get_modelmeta().custom_metadata_map
if key in self.meta_dict.keys():
return True
return False
@staticmethod
def _verify_model(model_path):
model_path = Path(model_path)
if not model_path.exists():
raise FileNotFoundError(f"{model_path} does not exists.")
if not model_path.is_file():
raise FileExistsError(f"{model_path} is not a file.")
def proc_hot_word(self, hot_words):
hot_words_length = [len(i) - 1 for i in hot_words]
hot_words_length.append(0)
hot_words_length = np.array(hot_words_length)
# hotwords.append('<s>')
def word_map(word):
return np.array([self.vocab[i] for i in word])
hot_word_int = [word_map(i) for i in hot_words]
hot_word_int.append(np.array([1]))
n_batch = len(hot_word_int)
hot_words = np.zeros((n_batch, 10, *hot_word_int[0].size()[1:]))
for i in range(n_batch):
hot_words[i, : hot_word_int[i].size(0)] = hot_word_int[i]
return hot_words, hot_words_length
def split_to_mini_sentence(words: list, word_limit: int = 20):
assert word_limit > 1
if len(words) <= word_limit:
return [words]
sentences = []
length = len(words)
sentence_len = length // word_limit
for i in range(sentence_len):
sentences.append(words[i * word_limit : (i + 1) * word_limit])
if length % word_limit > 0:
sentences.append(words[sentence_len * word_limit :])
return sentences
def code_mix_split_words(text: str):
words = []
segs = text.split()
for seg in segs:
# There is no space in seg.
current_word = ""
for c in seg:
if len(c.encode()) == 1:
# This is an ASCII char.
current_word += c
else:
# This is a Chinese char.
if len(current_word) > 0:
words.append(current_word)
current_word = ""
words.append(c)
if len(current_word) > 0:
words.append(current_word)
return words
def isEnglish(text: str):
if re.search("^[a-zA-Z']+$", text):
return True
else:
return False
def join_chinese_and_english(input_list):
line = ""
for token in input_list:
if isEnglish(token):
line = line + " " + token
else:
line = line + token
line = line.strip()
return line
def code_mix_split_words_jieba(seg_dict_file: str):
jieba.load_userdict(seg_dict_file)
def _fn(text: str):
input_list = text.split()
token_list_all = []
langauge_list = []
token_list_tmp = []
language_flag = None
for token in input_list:
if isEnglish(token) and language_flag == "Chinese":
token_list_all.append(token_list_tmp)
langauge_list.append("Chinese")
token_list_tmp = []
elif not isEnglish(token) and language_flag == "English":
token_list_all.append(token_list_tmp)
langauge_list.append("English")
token_list_tmp = []
token_list_tmp.append(token)
if isEnglish(token):
language_flag = "English"
else:
language_flag = "Chinese"
if token_list_tmp:
token_list_all.append(token_list_tmp)
langauge_list.append(language_flag)
result_list = []
for token_list_tmp, language_flag in zip(token_list_all, langauge_list):
if language_flag == "English":
result_list.extend(token_list_tmp)
else:
seg_list = jieba.cut(
join_chinese_and_english(token_list_tmp), HMM=False
)
result_list.extend(seg_list)
return result_list
return _fn
def read_yaml(yaml_path: Union[str, Path]) -> Dict:
if not Path(yaml_path).exists():
raise FileExistsError(f"The {yaml_path} does not exist.")
with open(str(yaml_path), "rb") as f:
data = yaml.load(f, Loader=yaml.Loader)
return data
|