KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_conv_layer, build_upsample_layer
from mmcv.ops.carafe import CARAFEPack
from mmengine.config import ConfigDict
from mmengine.model import BaseModule, ModuleList
from mmengine.structures import InstanceData
from torch import Tensor
from torch.nn.modules.utils import _pair
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.models.utils import empty_instances
from mmdet.registry import MODELS
from mmdet.structures.mask import mask_target
from mmdet.utils import ConfigType, InstanceList, OptConfigType, OptMultiConfig
BYTES_PER_FLOAT = 4
# TODO: This memory limit may be too much or too little. It would be better to
# determine it based on available resources.
GPU_MEM_LIMIT = 1024**3 # 1 GB memory limit
@MODELS.register_module()
class FCNMaskHead(BaseModule):
def __init__(self,
num_convs: int = 4,
roi_feat_size: int = 14,
in_channels: int = 256,
conv_kernel_size: int = 3,
conv_out_channels: int = 256,
num_classes: int = 80,
class_agnostic: int = False,
upsample_cfg: ConfigType = dict(
type='deconv', scale_factor=2),
conv_cfg: OptConfigType = None,
norm_cfg: OptConfigType = None,
predictor_cfg: ConfigType = dict(type='Conv'),
loss_mask: ConfigType = dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
init_cfg: OptMultiConfig = None) -> None:
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super().__init__(init_cfg=init_cfg)
self.upsample_cfg = upsample_cfg.copy()
if self.upsample_cfg['type'] not in [
None, 'deconv', 'nearest', 'bilinear', 'carafe'
]:
raise ValueError(
f'Invalid upsample method {self.upsample_cfg["type"]}, '
'accepted methods are "deconv", "nearest", "bilinear", '
'"carafe"')
self.num_convs = num_convs
# WARN: roi_feat_size is reserved and not used
self.roi_feat_size = _pair(roi_feat_size)
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.conv_out_channels = conv_out_channels
self.upsample_method = self.upsample_cfg.get('type')
self.scale_factor = self.upsample_cfg.pop('scale_factor', None)
self.num_classes = num_classes
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.predictor_cfg = predictor_cfg
self.loss_mask = MODELS.build(loss_mask)
self.convs = ModuleList()
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
upsample_in_channels = (
self.conv_out_channels if self.num_convs > 0 else in_channels)
upsample_cfg_ = self.upsample_cfg.copy()
if self.upsample_method is None:
self.upsample = None
elif self.upsample_method == 'deconv':
upsample_cfg_.update(
in_channels=upsample_in_channels,
out_channels=self.conv_out_channels,
kernel_size=self.scale_factor,
stride=self.scale_factor)
self.upsample = build_upsample_layer(upsample_cfg_)
elif self.upsample_method == 'carafe':
upsample_cfg_.update(
channels=upsample_in_channels, scale_factor=self.scale_factor)
self.upsample = build_upsample_layer(upsample_cfg_)
else:
# suppress warnings
align_corners = (None
if self.upsample_method == 'nearest' else False)
upsample_cfg_.update(
scale_factor=self.scale_factor,
mode=self.upsample_method,
align_corners=align_corners)
self.upsample = build_upsample_layer(upsample_cfg_)
out_channels = 1 if self.class_agnostic else self.num_classes
logits_in_channel = (
self.conv_out_channels
if self.upsample_method == 'deconv' else upsample_in_channels)
self.conv_logits = build_conv_layer(self.predictor_cfg,
logits_in_channel, out_channels, 1)
self.relu = nn.ReLU(inplace=True)
self.debug_imgs = None
def init_weights(self) -> None:
"""Initialize the weights."""
super().init_weights()
for m in [self.upsample, self.conv_logits]:
if m is None:
continue
elif isinstance(m, CARAFEPack):
m.init_weights()
elif hasattr(m, 'weight') and hasattr(m, 'bias'):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
nn.init.constant_(m.bias, 0)
def forward(self, x: Tensor) -> Tensor:
"""Forward features from the upstream network.
Args:
x (Tensor): Extract mask RoI features.
Returns:
Tensor: Predicted foreground masks.
"""
for conv in self.convs:
x = conv(x)
if self.upsample is not None:
x = self.upsample(x)
if self.upsample_method == 'deconv':
x = self.relu(x)
mask_preds = self.conv_logits(x)
return mask_preds
def get_targets(self, sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> Tensor:
"""Calculate the ground truth for all samples in a batch according to
the sampling_results.
Args:
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
Tensor: Mask target of each positive proposals in the image.
"""
pos_proposals = [res.pos_priors for res in sampling_results]
pos_assigned_gt_inds = [
res.pos_assigned_gt_inds for res in sampling_results
]
gt_masks = [res.masks for res in batch_gt_instances]
mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds,
gt_masks, rcnn_train_cfg)
return mask_targets
def loss_and_target(self, mask_preds: Tensor,
sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> dict:
"""Calculate the loss based on the features extracted by the mask head.
Args:
mask_preds (Tensor): Predicted foreground masks, has shape
(num_pos, num_classes, h, w).
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss and targets components.
"""
mask_targets = self.get_targets(
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=rcnn_train_cfg)
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
loss = dict()
if mask_preds.size(0) == 0:
loss_mask = mask_preds.sum()
else:
if self.class_agnostic:
loss_mask = self.loss_mask(mask_preds, mask_targets,
torch.zeros_like(pos_labels))
else:
loss_mask = self.loss_mask(mask_preds, mask_targets,
pos_labels)
loss['loss_mask'] = loss_mask
# TODO: which algorithm requires mask_targets?
return dict(loss_mask=loss, mask_targets=mask_targets)
def predict_by_feat(self,
mask_preds: Tuple[Tensor],
results_list: List[InstanceData],
batch_img_metas: List[dict],
rcnn_test_cfg: ConfigDict,
rescale: bool = False,
activate_map: bool = False) -> InstanceList:
"""Transform a batch of output features extracted from the head into
mask results.
Args:
mask_preds (tuple[Tensor]): Tuple of predicted foreground masks,
each has shape (n, num_classes, h, w).
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
batch_img_metas (list[dict]): List of image information.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
activate_map (book): Whether get results with augmentations test.
If True, the `mask_preds` will not process with sigmoid.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
assert len(mask_preds) == len(results_list) == len(batch_img_metas)
for img_id in range(len(batch_img_metas)):
img_meta = batch_img_metas[img_id]
results = results_list[img_id]
bboxes = results.bboxes
if bboxes.shape[0] == 0:
results_list[img_id] = empty_instances(
[img_meta],
bboxes.device,
task_type='mask',
instance_results=[results],
mask_thr_binary=rcnn_test_cfg.mask_thr_binary)[0]
else:
im_mask = self._predict_by_feat_single(
mask_preds=mask_preds[img_id],
bboxes=bboxes,
labels=results.labels,
img_meta=img_meta,
rcnn_test_cfg=rcnn_test_cfg,
rescale=rescale,
activate_map=activate_map)
results.masks = im_mask
return results_list
def _predict_by_feat_single(self,
mask_preds: Tensor,
bboxes: Tensor,
labels: Tensor,
img_meta: dict,
rcnn_test_cfg: ConfigDict,
rescale: bool = False,
activate_map: bool = False) -> Tensor:
"""Get segmentation masks from mask_preds and bboxes.
Args:
mask_preds (Tensor): Predicted foreground masks, has shape
(n, num_classes, h, w).
bboxes (Tensor): Predicted bboxes, has shape (n, 4)
labels (Tensor): Labels of bboxes, has shape (n, )
img_meta (dict): image information.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
activate_map (book): Whether get results with augmentations test.
If True, the `mask_preds` will not process with sigmoid.
Defaults to False.
Returns:
Tensor: Encoded masks, has shape (n, img_w, img_h)
Example:
>>> from mmengine.config import Config
>>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import * # NOQA
>>> N = 7 # N = number of extracted ROIs
>>> C, H, W = 11, 32, 32
>>> # Create example instance of FCN Mask Head.
>>> self = FCNMaskHead(num_classes=C, num_convs=0)
>>> inputs = torch.rand(N, self.in_channels, H, W)
>>> mask_preds = self.forward(inputs)
>>> # Each input is associated with some bounding box
>>> bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N)
>>> labels = torch.randint(0, C, size=(N,))
>>> rcnn_test_cfg = Config({'mask_thr_binary': 0, })
>>> ori_shape = (H * 4, W * 4)
>>> scale_factor = (1, 1)
>>> rescale = False
>>> img_meta = {'scale_factor': scale_factor,
... 'ori_shape': ori_shape}
>>> # Encoded masks are a list for each category.
>>> encoded_masks = self._get_seg_masks_single(
... mask_preds, bboxes, labels,
... img_meta, rcnn_test_cfg, rescale)
>>> assert encoded_masks.size()[0] == N
>>> assert encoded_masks.size()[1:] == ori_shape
"""
scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat(
(1, 2))
img_h, img_w = img_meta['ori_shape'][:2]
device = bboxes.device
if not activate_map:
mask_preds = mask_preds.sigmoid()
else:
# In AugTest, has been activated before
mask_preds = bboxes.new_tensor(mask_preds)
if rescale: # in-placed rescale the bboxes
bboxes /= scale_factor
else:
w_scale, h_scale = scale_factor[0, 0], scale_factor[0, 1]
img_h = np.round(img_h * h_scale.item()).astype(np.int32)
img_w = np.round(img_w * w_scale.item()).astype(np.int32)
N = len(mask_preds)
# The actual implementation split the input into chunks,
# and paste them chunk by chunk.
if device.type == 'cpu':
# CPU is most efficient when they are pasted one by one with
# skip_empty=True, so that it performs minimal number of
# operations.
num_chunks = N
else:
# GPU benefits from parallelism for larger chunks,
# but may have memory issue
# the types of img_w and img_h are np.int32,
# when the image resolution is large,
# the calculation of num_chunks will overflow.
# so we need to change the types of img_w and img_h to int.
# See https://github.com/open-mmlab/mmdetection/pull/5191
num_chunks = int(
np.ceil(N * int(img_h) * int(img_w) * BYTES_PER_FLOAT /
GPU_MEM_LIMIT))
assert (num_chunks <=
N), 'Default GPU_MEM_LIMIT is too small; try increasing it'
chunks = torch.chunk(torch.arange(N, device=device), num_chunks)
threshold = rcnn_test_cfg.mask_thr_binary
im_mask = torch.zeros(
N,
img_h,
img_w,
device=device,
dtype=torch.bool if threshold >= 0 else torch.uint8)
if not self.class_agnostic:
mask_preds = mask_preds[range(N), labels][:, None]
for inds in chunks:
masks_chunk, spatial_inds = _do_paste_mask(
mask_preds[inds],
bboxes[inds],
img_h,
img_w,
skip_empty=device.type == 'cpu')
if threshold >= 0:
masks_chunk = (masks_chunk >= threshold).to(dtype=torch.bool)
else:
# for visualization and debugging
masks_chunk = (masks_chunk * 255).to(dtype=torch.uint8)
im_mask[(inds, ) + spatial_inds] = masks_chunk
return im_mask
def _do_paste_mask(masks: Tensor,
boxes: Tensor,
img_h: int,
img_w: int,
skip_empty: bool = True) -> tuple:
"""Paste instance masks according to boxes.
This implementation is modified from
https://github.com/facebookresearch/detectron2/
Args:
masks (Tensor): N, 1, H, W
boxes (Tensor): N, 4
img_h (int): Height of the image to be pasted.
img_w (int): Width of the image to be pasted.
skip_empty (bool): Only paste masks within the region that
tightly bound all boxes, and returns the results this region only.
An important optimization for CPU.
Returns:
tuple: (Tensor, tuple). The first item is mask tensor, the second one
is the slice object.
If skip_empty == False, the whole image will be pasted. It will
return a mask of shape (N, img_h, img_w) and an empty tuple.
If skip_empty == True, only area around the mask will be pasted.
A mask of shape (N, h', w') and its start and end coordinates
in the original image will be returned.
"""
# On GPU, paste all masks together (up to chunk size)
# by using the entire image to sample the masks
# Compared to pasting them one by one,
# this has more operations but is faster on COCO-scale dataset.
device = masks.device
if skip_empty:
x0_int, y0_int = torch.clamp(
boxes.min(dim=0).values.floor()[:2] - 1,
min=0).to(dtype=torch.int32)
x1_int = torch.clamp(
boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32)
y1_int = torch.clamp(
boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32)
else:
x0_int, y0_int = 0, 0
x1_int, y1_int = img_w, img_h
x0, y0, x1, y1 = torch.split(boxes, 1, dim=1) # each is Nx1
N = masks.shape[0]
img_y = torch.arange(y0_int, y1_int, device=device).to(torch.float32) + 0.5
img_x = torch.arange(x0_int, x1_int, device=device).to(torch.float32) + 0.5
img_y = (img_y - y0) / (y1 - y0) * 2 - 1
img_x = (img_x - x0) / (x1 - x0) * 2 - 1
# img_x, img_y have shapes (N, w), (N, h)
# IsInf op is not supported with ONNX<=1.7.0
if not torch.onnx.is_in_onnx_export():
if torch.isinf(img_x).any():
inds = torch.where(torch.isinf(img_x))
img_x[inds] = 0
if torch.isinf(img_y).any():
inds = torch.where(torch.isinf(img_y))
img_y[inds] = 0
gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1))
gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1))
grid = torch.stack([gx, gy], dim=3)
img_masks = F.grid_sample(
masks.to(dtype=torch.float32), grid, align_corners=False)
if skip_empty:
return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int))
else:
return img_masks[:, 0], ()