Spaces:
Runtime error
Runtime error
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- .gitignore +5 -0
- README.md +1 -1
- configs/_base_/datasets/cifar100_bs16.py +45 -0
- configs/_base_/datasets/cifar10_bs16.py +45 -0
- configs/_base_/datasets/cityscapes_detection.py +66 -0
- configs/_base_/datasets/cityscapes_instance.py +96 -0
- configs/_base_/datasets/coco_detection.py +85 -0
- configs/_base_/datasets/coco_instance.py +85 -0
- configs/_base_/datasets/coco_instance_semantic.py +68 -0
- configs/_base_/datasets/coco_panoptic.py +86 -0
- configs/_base_/datasets/cub_bs8_384.py +51 -0
- configs/_base_/datasets/cub_bs8_448.py +50 -0
- configs/_base_/datasets/deepfashion.py +83 -0
- configs/_base_/datasets/imagenet21k_bs128.py +53 -0
- configs/_base_/datasets/imagenet_bs128_mbv3.py +68 -0
- configs/_base_/datasets/imagenet_bs128_poolformer_medium_224.py +82 -0
- configs/_base_/datasets/imagenet_bs128_poolformer_small_224.py +82 -0
- configs/_base_/datasets/imagenet_bs128_revvit_224.py +85 -0
- configs/_base_/datasets/imagenet_bs16_eva_196.py +62 -0
- configs/_base_/datasets/imagenet_bs16_eva_336.py +62 -0
- configs/_base_/datasets/imagenet_bs16_eva_560.py +62 -0
- configs/_base_/datasets/imagenet_bs16_pil_bicubic_384.py +55 -0
- configs/_base_/datasets/imagenet_bs256_davit_224.py +82 -0
- configs/_base_/datasets/imagenet_bs256_rsb_a12.py +74 -0
- configs/_base_/datasets/imagenet_bs256_rsb_a3.py +74 -0
- configs/_base_/datasets/imagenet_bs32.py +53 -0
- configs/_base_/datasets/imagenet_bs32_pil_bicubic.py +62 -0
- configs/_base_/datasets/imagenet_bs32_pil_resize.py +53 -0
- configs/_base_/datasets/imagenet_bs64.py +53 -0
- configs/_base_/datasets/imagenet_bs64_autoaug.py +61 -0
- configs/_base_/datasets/imagenet_bs64_clip_224.py +72 -0
- configs/_base_/datasets/imagenet_bs64_clip_384.py +72 -0
- configs/_base_/datasets/imagenet_bs64_clip_448.py +73 -0
- configs/_base_/datasets/imagenet_bs64_convmixer_224.py +82 -0
- configs/_base_/datasets/imagenet_bs64_deit3_224.py +82 -0
- configs/_base_/datasets/imagenet_bs64_deit3_384.py +62 -0
- configs/_base_/datasets/imagenet_bs64_edgenext_256.py +82 -0
- configs/_base_/datasets/imagenet_bs64_mixer_224.py +54 -0
- configs/_base_/datasets/imagenet_bs64_pil_resize.py +53 -0
- configs/_base_/datasets/imagenet_bs64_pil_resize_autoaug.py +70 -0
- configs/_base_/datasets/imagenet_bs64_swin_224.py +82 -0
- configs/_base_/datasets/imagenet_bs64_swin_256.py +82 -0
- configs/_base_/datasets/imagenet_bs64_swin_384.py +56 -0
- configs/_base_/datasets/imagenet_bs64_t2t_224.py +82 -0
- configs/_base_/datasets/imagenet_bs8_pil_bicubic_320.py +61 -0
- configs/_base_/datasets/lvis_v0.5_instance.py +69 -0
- configs/_base_/datasets/lvis_v1_instance.py +22 -0
- configs/_base_/datasets/objects365v1_detection.py +64 -0
- configs/_base_/datasets/objects365v2_detection.py +63 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
images/wallaby.png filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/zebra.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mmclassification
|
2 |
+
mmdetection
|
3 |
+
mmsegmentation
|
4 |
+
.idea
|
5 |
+
.DS_Store
|
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: gray
|
|
5 |
colorTo: purple
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.17.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
5 |
colorTo: purple
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.17.0
|
8 |
+
app_file: main_page.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
configs/_base_/datasets/cifar100_bs16.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CIFAR100'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=100,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[129.304, 124.070, 112.434],
|
7 |
+
std=[68.170, 65.392, 70.418],
|
8 |
+
# loaded images are already RGB format
|
9 |
+
to_rgb=False)
|
10 |
+
|
11 |
+
train_pipeline = [
|
12 |
+
dict(type='RandomCrop', crop_size=32, padding=4),
|
13 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
14 |
+
dict(type='PackClsInputs'),
|
15 |
+
]
|
16 |
+
|
17 |
+
test_pipeline = [
|
18 |
+
dict(type='PackClsInputs'),
|
19 |
+
]
|
20 |
+
|
21 |
+
train_dataloader = dict(
|
22 |
+
batch_size=16,
|
23 |
+
num_workers=2,
|
24 |
+
dataset=dict(
|
25 |
+
type=dataset_type,
|
26 |
+
data_prefix='data/cifar100',
|
27 |
+
test_mode=False,
|
28 |
+
pipeline=train_pipeline),
|
29 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
30 |
+
)
|
31 |
+
|
32 |
+
val_dataloader = dict(
|
33 |
+
batch_size=16,
|
34 |
+
num_workers=2,
|
35 |
+
dataset=dict(
|
36 |
+
type=dataset_type,
|
37 |
+
data_prefix='data/cifar100/',
|
38 |
+
test_mode=True,
|
39 |
+
pipeline=test_pipeline),
|
40 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
41 |
+
)
|
42 |
+
val_evaluator = dict(type='Accuracy', topk=(1, ))
|
43 |
+
|
44 |
+
test_dataloader = val_dataloader
|
45 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/cifar10_bs16.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CIFAR10'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=10,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[125.307, 122.961, 113.8575],
|
7 |
+
std=[51.5865, 50.847, 51.255],
|
8 |
+
# loaded images are already RGB format
|
9 |
+
to_rgb=False)
|
10 |
+
|
11 |
+
train_pipeline = [
|
12 |
+
dict(type='RandomCrop', crop_size=32, padding=4),
|
13 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
14 |
+
dict(type='PackClsInputs'),
|
15 |
+
]
|
16 |
+
|
17 |
+
test_pipeline = [
|
18 |
+
dict(type='PackClsInputs'),
|
19 |
+
]
|
20 |
+
|
21 |
+
train_dataloader = dict(
|
22 |
+
batch_size=16,
|
23 |
+
num_workers=2,
|
24 |
+
dataset=dict(
|
25 |
+
type=dataset_type,
|
26 |
+
data_prefix='data/cifar10',
|
27 |
+
test_mode=False,
|
28 |
+
pipeline=train_pipeline),
|
29 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
30 |
+
)
|
31 |
+
|
32 |
+
val_dataloader = dict(
|
33 |
+
batch_size=16,
|
34 |
+
num_workers=2,
|
35 |
+
dataset=dict(
|
36 |
+
type=dataset_type,
|
37 |
+
data_prefix='data/cifar10/',
|
38 |
+
test_mode=True,
|
39 |
+
pipeline=test_pipeline),
|
40 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
41 |
+
)
|
42 |
+
val_evaluator = dict(type='Accuracy', topk=(1, ))
|
43 |
+
|
44 |
+
test_dataloader = val_dataloader
|
45 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/cityscapes_detection.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CityscapesDataset'
|
3 |
+
data_root = 'data/cityscapes/'
|
4 |
+
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(
|
9 |
+
type='RandomResize',
|
10 |
+
scale=[(2048, 800), (2048, 1024)],
|
11 |
+
keep_ratio=True),
|
12 |
+
dict(type='RandomFlip', prob=0.5),
|
13 |
+
dict(type='PackDetInputs')
|
14 |
+
]
|
15 |
+
|
16 |
+
test_pipeline = [
|
17 |
+
dict(type='LoadImageFromFile'),
|
18 |
+
dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
|
19 |
+
# If you don't have a gt annotation, delete the pipeline
|
20 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
21 |
+
dict(
|
22 |
+
type='PackDetInputs',
|
23 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
24 |
+
'scale_factor'))
|
25 |
+
]
|
26 |
+
|
27 |
+
train_dataloader = dict(
|
28 |
+
batch_size=1,
|
29 |
+
num_workers=2,
|
30 |
+
persistent_workers=True,
|
31 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
32 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
33 |
+
dataset=dict(
|
34 |
+
type='RepeatDataset',
|
35 |
+
times=8,
|
36 |
+
dataset=dict(
|
37 |
+
type=dataset_type,
|
38 |
+
data_root=data_root,
|
39 |
+
ann_file='annotations/instancesonly_filtered_gtFine_train.json',
|
40 |
+
data_prefix=dict(img='leftImg8bit/train/'),
|
41 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
42 |
+
pipeline=train_pipeline)))
|
43 |
+
|
44 |
+
val_dataloader = dict(
|
45 |
+
batch_size=1,
|
46 |
+
num_workers=2,
|
47 |
+
persistent_workers=True,
|
48 |
+
drop_last=False,
|
49 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root=data_root,
|
53 |
+
ann_file='annotations/instancesonly_filtered_gtFine_val.json',
|
54 |
+
data_prefix=dict(img='leftImg8bit/val/'),
|
55 |
+
test_mode=True,
|
56 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
57 |
+
pipeline=test_pipeline))
|
58 |
+
|
59 |
+
test_dataloader = val_dataloader
|
60 |
+
|
61 |
+
val_evaluator = dict(
|
62 |
+
type='CocoMetric',
|
63 |
+
ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json',
|
64 |
+
metric='bbox')
|
65 |
+
|
66 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/cityscapes_instance.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CityscapesDataset'
|
3 |
+
data_root = 'data/cityscapes/'
|
4 |
+
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
8 |
+
dict(
|
9 |
+
type='RandomResize',
|
10 |
+
scale=[(2048, 800), (2048, 1024)],
|
11 |
+
keep_ratio=True),
|
12 |
+
dict(type='RandomFlip', prob=0.5),
|
13 |
+
dict(type='PackDetInputs')
|
14 |
+
]
|
15 |
+
|
16 |
+
test_pipeline = [
|
17 |
+
dict(type='LoadImageFromFile'),
|
18 |
+
dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
|
19 |
+
# If you don't have a gt annotation, delete the pipeline
|
20 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
21 |
+
dict(
|
22 |
+
type='PackDetInputs',
|
23 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
24 |
+
'scale_factor'))
|
25 |
+
]
|
26 |
+
|
27 |
+
train_dataloader = dict(
|
28 |
+
batch_size=1,
|
29 |
+
num_workers=2,
|
30 |
+
persistent_workers=True,
|
31 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
32 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
33 |
+
dataset=dict(
|
34 |
+
type='RepeatDataset',
|
35 |
+
times=8,
|
36 |
+
dataset=dict(
|
37 |
+
type=dataset_type,
|
38 |
+
data_root=data_root,
|
39 |
+
ann_file='annotations/instancesonly_filtered_gtFine_train.json',
|
40 |
+
data_prefix=dict(img='leftImg8bit/train/'),
|
41 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
42 |
+
pipeline=train_pipeline)))
|
43 |
+
|
44 |
+
val_dataloader = dict(
|
45 |
+
batch_size=1,
|
46 |
+
num_workers=2,
|
47 |
+
persistent_workers=True,
|
48 |
+
drop_last=False,
|
49 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root=data_root,
|
53 |
+
ann_file='annotations/instancesonly_filtered_gtFine_val.json',
|
54 |
+
data_prefix=dict(img='leftImg8bit/val/'),
|
55 |
+
test_mode=True,
|
56 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
57 |
+
pipeline=test_pipeline))
|
58 |
+
|
59 |
+
test_dataloader = val_dataloader
|
60 |
+
|
61 |
+
val_evaluator = [
|
62 |
+
dict(
|
63 |
+
type='CocoMetric',
|
64 |
+
ann_file=data_root +
|
65 |
+
'annotations/instancesonly_filtered_gtFine_val.json',
|
66 |
+
metric=['bbox', 'segm']),
|
67 |
+
dict(
|
68 |
+
type='CityScapesMetric',
|
69 |
+
ann_file=data_root +
|
70 |
+
'annotations/instancesonly_filtered_gtFine_val.json',
|
71 |
+
seg_prefix=data_root + '/gtFine/val',
|
72 |
+
outfile_prefix='./work_dirs/cityscapes_metric/instance')
|
73 |
+
]
|
74 |
+
|
75 |
+
test_evaluator = val_evaluator
|
76 |
+
|
77 |
+
# inference on test dataset and
|
78 |
+
# format the output results for submission.
|
79 |
+
# test_dataloader = dict(
|
80 |
+
# batch_size=1,
|
81 |
+
# num_workers=2,
|
82 |
+
# persistent_workers=True,
|
83 |
+
# drop_last=False,
|
84 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
85 |
+
# dataset=dict(
|
86 |
+
# type=dataset_type,
|
87 |
+
# data_root=data_root,
|
88 |
+
# ann_file='annotations/instancesonly_filtered_gtFine_test.json',
|
89 |
+
# data_prefix=dict(img='leftImg8bit/test/'),
|
90 |
+
# test_mode=True,
|
91 |
+
# filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
92 |
+
# pipeline=test_pipeline))
|
93 |
+
# test_evaluator = dict(
|
94 |
+
# type='CityScapesMetric',
|
95 |
+
# format_only=True,
|
96 |
+
# outfile_prefix='./work_dirs/cityscapes_metric/test')
|
configs/_base_/datasets/coco_detection.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
16 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
17 |
+
dict(type='RandomFlip', prob=0.5),
|
18 |
+
dict(type='PackDetInputs')
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
22 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
23 |
+
# If you don't have a gt annotation, delete the pipeline
|
24 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
25 |
+
dict(
|
26 |
+
type='PackDetInputs',
|
27 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
28 |
+
'scale_factor'))
|
29 |
+
]
|
30 |
+
train_dataloader = dict(
|
31 |
+
batch_size=2,
|
32 |
+
num_workers=2,
|
33 |
+
persistent_workers=True,
|
34 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
35 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
36 |
+
dataset=dict(
|
37 |
+
type=dataset_type,
|
38 |
+
data_root=data_root,
|
39 |
+
ann_file='annotations/instances_train2017.json',
|
40 |
+
data_prefix=dict(img='train2017/'),
|
41 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
42 |
+
pipeline=train_pipeline))
|
43 |
+
val_dataloader = dict(
|
44 |
+
batch_size=1,
|
45 |
+
num_workers=2,
|
46 |
+
persistent_workers=True,
|
47 |
+
drop_last=False,
|
48 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
49 |
+
dataset=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root=data_root,
|
52 |
+
ann_file='annotations/instances_val2017.json',
|
53 |
+
data_prefix=dict(img='val2017/'),
|
54 |
+
test_mode=True,
|
55 |
+
pipeline=test_pipeline))
|
56 |
+
test_dataloader = val_dataloader
|
57 |
+
|
58 |
+
val_evaluator = dict(
|
59 |
+
type='CocoMetric',
|
60 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
61 |
+
metric='bbox',
|
62 |
+
format_only=False)
|
63 |
+
test_evaluator = val_evaluator
|
64 |
+
|
65 |
+
# inference on test dataset and
|
66 |
+
# format the output results for submission.
|
67 |
+
# test_dataloader = dict(
|
68 |
+
# batch_size=1,
|
69 |
+
# num_workers=2,
|
70 |
+
# persistent_workers=True,
|
71 |
+
# drop_last=False,
|
72 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
73 |
+
# dataset=dict(
|
74 |
+
# type=dataset_type,
|
75 |
+
# data_root=data_root,
|
76 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
77 |
+
# data_prefix=dict(img='test2017/'),
|
78 |
+
# test_mode=True,
|
79 |
+
# pipeline=test_pipeline))
|
80 |
+
# test_evaluator = dict(
|
81 |
+
# type='CocoMetric',
|
82 |
+
# metric='bbox',
|
83 |
+
# format_only=True,
|
84 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
85 |
+
# outfile_prefix='./work_dirs/coco_detection/test')
|
configs/_base_/datasets/coco_instance.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
16 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
17 |
+
dict(type='RandomFlip', prob=0.5),
|
18 |
+
dict(type='PackDetInputs')
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
22 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
23 |
+
# If you don't have a gt annotation, delete the pipeline
|
24 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
25 |
+
dict(
|
26 |
+
type='PackDetInputs',
|
27 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
28 |
+
'scale_factor'))
|
29 |
+
]
|
30 |
+
train_dataloader = dict(
|
31 |
+
batch_size=2,
|
32 |
+
num_workers=2,
|
33 |
+
persistent_workers=True,
|
34 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
35 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
36 |
+
dataset=dict(
|
37 |
+
type=dataset_type,
|
38 |
+
data_root=data_root,
|
39 |
+
ann_file='annotations/instances_train2017.json',
|
40 |
+
data_prefix=dict(img='train2017/'),
|
41 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
42 |
+
pipeline=train_pipeline))
|
43 |
+
val_dataloader = dict(
|
44 |
+
batch_size=1,
|
45 |
+
num_workers=2,
|
46 |
+
persistent_workers=True,
|
47 |
+
drop_last=False,
|
48 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
49 |
+
dataset=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root=data_root,
|
52 |
+
ann_file='annotations/instances_val2017.json',
|
53 |
+
data_prefix=dict(img='val2017/'),
|
54 |
+
test_mode=True,
|
55 |
+
pipeline=test_pipeline))
|
56 |
+
test_dataloader = val_dataloader
|
57 |
+
|
58 |
+
val_evaluator = dict(
|
59 |
+
type='CocoMetric',
|
60 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
61 |
+
metric=['bbox', 'segm'],
|
62 |
+
format_only=False)
|
63 |
+
test_evaluator = val_evaluator
|
64 |
+
|
65 |
+
# inference on test dataset and
|
66 |
+
# format the output results for submission.
|
67 |
+
# test_dataloader = dict(
|
68 |
+
# batch_size=1,
|
69 |
+
# num_workers=2,
|
70 |
+
# persistent_workers=True,
|
71 |
+
# drop_last=False,
|
72 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
73 |
+
# dataset=dict(
|
74 |
+
# type=dataset_type,
|
75 |
+
# data_root=data_root,
|
76 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
77 |
+
# data_prefix=dict(img='test2017/'),
|
78 |
+
# test_mode=True,
|
79 |
+
# pipeline=test_pipeline))
|
80 |
+
# test_evaluator = dict(
|
81 |
+
# type='CocoMetric',
|
82 |
+
# metric=['bbox', 'segm'],
|
83 |
+
# format_only=True,
|
84 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
85 |
+
# outfile_prefix='./work_dirs/coco_instance/test')
|
configs/_base_/datasets/coco_instance_semantic.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(
|
16 |
+
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
|
17 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
18 |
+
dict(type='RandomFlip', prob=0.5),
|
19 |
+
dict(type='PackDetInputs')
|
20 |
+
]
|
21 |
+
test_pipeline = [
|
22 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
23 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
24 |
+
# If you don't have a gt annotation, delete the pipeline
|
25 |
+
dict(
|
26 |
+
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
|
27 |
+
dict(
|
28 |
+
type='PackDetInputs',
|
29 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
30 |
+
'scale_factor'))
|
31 |
+
]
|
32 |
+
|
33 |
+
train_dataloader = dict(
|
34 |
+
batch_size=2,
|
35 |
+
num_workers=2,
|
36 |
+
persistent_workers=True,
|
37 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
38 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
39 |
+
dataset=dict(
|
40 |
+
type=dataset_type,
|
41 |
+
data_root=data_root,
|
42 |
+
ann_file='annotations/instances_train2017.json',
|
43 |
+
data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'),
|
44 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
45 |
+
pipeline=train_pipeline))
|
46 |
+
|
47 |
+
val_dataloader = dict(
|
48 |
+
batch_size=1,
|
49 |
+
num_workers=2,
|
50 |
+
persistent_workers=True,
|
51 |
+
drop_last=False,
|
52 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
53 |
+
dataset=dict(
|
54 |
+
type=dataset_type,
|
55 |
+
data_root=data_root,
|
56 |
+
ann_file='annotations/instances_val2017.json',
|
57 |
+
data_prefix=dict(img='val2017/'),
|
58 |
+
test_mode=True,
|
59 |
+
pipeline=test_pipeline))
|
60 |
+
|
61 |
+
test_dataloader = val_dataloader
|
62 |
+
|
63 |
+
val_evaluator = dict(
|
64 |
+
type='CocoMetric',
|
65 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
66 |
+
metric=['bbox', 'segm'],
|
67 |
+
format_only=False)
|
68 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/coco_panoptic.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoPanopticDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(type='LoadPanopticAnnotations', file_client_args=file_client_args),
|
16 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
17 |
+
dict(type='RandomFlip', prob=0.5),
|
18 |
+
dict(type='PackDetInputs')
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
22 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
23 |
+
dict(type='LoadPanopticAnnotations', file_client_args=file_client_args),
|
24 |
+
dict(
|
25 |
+
type='PackDetInputs',
|
26 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
27 |
+
'scale_factor'))
|
28 |
+
]
|
29 |
+
|
30 |
+
train_dataloader = dict(
|
31 |
+
batch_size=2,
|
32 |
+
num_workers=2,
|
33 |
+
persistent_workers=True,
|
34 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
35 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
36 |
+
dataset=dict(
|
37 |
+
type=dataset_type,
|
38 |
+
data_root=data_root,
|
39 |
+
ann_file='annotations/panoptic_train2017.json',
|
40 |
+
data_prefix=dict(
|
41 |
+
img='train2017/', seg='annotations/panoptic_train2017/'),
|
42 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
43 |
+
pipeline=train_pipeline))
|
44 |
+
val_dataloader = dict(
|
45 |
+
batch_size=1,
|
46 |
+
num_workers=2,
|
47 |
+
persistent_workers=True,
|
48 |
+
drop_last=False,
|
49 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root=data_root,
|
53 |
+
ann_file='annotations/panoptic_val2017.json',
|
54 |
+
data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'),
|
55 |
+
test_mode=True,
|
56 |
+
pipeline=test_pipeline))
|
57 |
+
test_dataloader = val_dataloader
|
58 |
+
|
59 |
+
val_evaluator = dict(
|
60 |
+
type='CocoPanopticMetric',
|
61 |
+
ann_file=data_root + 'annotations/panoptic_val2017.json',
|
62 |
+
seg_prefix=data_root + 'annotations/panoptic_val2017/',
|
63 |
+
file_client_args=file_client_args,
|
64 |
+
)
|
65 |
+
test_evaluator = val_evaluator
|
66 |
+
|
67 |
+
# inference on test dataset and
|
68 |
+
# format the output results for submission.
|
69 |
+
# test_dataloader = dict(
|
70 |
+
# batch_size=1,
|
71 |
+
# num_workers=1,
|
72 |
+
# persistent_workers=True,
|
73 |
+
# drop_last=False,
|
74 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
75 |
+
# dataset=dict(
|
76 |
+
# type=dataset_type,
|
77 |
+
# data_root=data_root,
|
78 |
+
# ann_file='annotations/panoptic_image_info_test-dev2017.json',
|
79 |
+
# data_prefix=dict(img='test2017/'),
|
80 |
+
# test_mode=True,
|
81 |
+
# pipeline=test_pipeline))
|
82 |
+
# test_evaluator = dict(
|
83 |
+
# type='CocoPanopticMetric',
|
84 |
+
# format_only=True,
|
85 |
+
# ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json',
|
86 |
+
# outfile_prefix='./work_dirs/coco_panoptic/test')
|
configs/_base_/datasets/cub_bs8_384.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CUB'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=200,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(type='Resize', scale=510),
|
15 |
+
dict(type='RandomCrop', crop_size=384),
|
16 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
17 |
+
dict(type='PackClsInputs'),
|
18 |
+
]
|
19 |
+
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(type='Resize', scale=510),
|
23 |
+
dict(type='CenterCrop', crop_size=384),
|
24 |
+
dict(type='PackClsInputs'),
|
25 |
+
]
|
26 |
+
|
27 |
+
train_dataloader = dict(
|
28 |
+
batch_size=8,
|
29 |
+
num_workers=2,
|
30 |
+
dataset=dict(
|
31 |
+
type=dataset_type,
|
32 |
+
data_root='data/CUB_200_2011',
|
33 |
+
test_mode=False,
|
34 |
+
pipeline=train_pipeline),
|
35 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
36 |
+
)
|
37 |
+
|
38 |
+
val_dataloader = dict(
|
39 |
+
batch_size=8,
|
40 |
+
num_workers=2,
|
41 |
+
dataset=dict(
|
42 |
+
type=dataset_type,
|
43 |
+
data_root='data/CUB_200_2011',
|
44 |
+
test_mode=True,
|
45 |
+
pipeline=test_pipeline),
|
46 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
47 |
+
)
|
48 |
+
val_evaluator = dict(type='Accuracy', topk=(1, ))
|
49 |
+
|
50 |
+
test_dataloader = val_dataloader
|
51 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/cub_bs8_448.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CUB'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=200,
|
5 |
+
mean=[123.675, 116.28, 103.53],
|
6 |
+
std=[58.395, 57.12, 57.375],
|
7 |
+
# convert image from BGR to RGB
|
8 |
+
to_rgb=True,
|
9 |
+
)
|
10 |
+
|
11 |
+
train_pipeline = [
|
12 |
+
dict(type='LoadImageFromFile'),
|
13 |
+
dict(type='Resize', scale=600),
|
14 |
+
dict(type='RandomCrop', crop_size=448),
|
15 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
16 |
+
dict(type='PackClsInputs'),
|
17 |
+
]
|
18 |
+
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(type='Resize', scale=600),
|
22 |
+
dict(type='CenterCrop', crop_size=448),
|
23 |
+
dict(type='PackClsInputs'),
|
24 |
+
]
|
25 |
+
|
26 |
+
train_dataloader = dict(
|
27 |
+
batch_size=8,
|
28 |
+
num_workers=2,
|
29 |
+
dataset=dict(
|
30 |
+
type=dataset_type,
|
31 |
+
data_root='data/CUB_200_2011',
|
32 |
+
test_mode=False,
|
33 |
+
pipeline=train_pipeline),
|
34 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
35 |
+
)
|
36 |
+
|
37 |
+
val_dataloader = dict(
|
38 |
+
batch_size=8,
|
39 |
+
num_workers=2,
|
40 |
+
dataset=dict(
|
41 |
+
type=dataset_type,
|
42 |
+
data_root='data/CUB_200_2011',
|
43 |
+
test_mode=True,
|
44 |
+
pipeline=test_pipeline),
|
45 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
46 |
+
)
|
47 |
+
val_evaluator = dict(type='Accuracy', topk=(1, ))
|
48 |
+
|
49 |
+
test_dataloader = val_dataloader
|
50 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/deepfashion.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'DeepFashionDataset'
|
3 |
+
data_root = 'data/DeepFashion/In-shop/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
16 |
+
dict(type='Resize', scale=(750, 1101), keep_ratio=True),
|
17 |
+
dict(type='RandomFlip', prob=0.5),
|
18 |
+
dict(type='PackDetInputs')
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
22 |
+
dict(type='Resize', scale=(750, 1101), keep_ratio=True),
|
23 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
24 |
+
dict(
|
25 |
+
type='PackDetInputs',
|
26 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
27 |
+
'scale_factor'))
|
28 |
+
]
|
29 |
+
train_dataloader = dict(
|
30 |
+
batch_size=2,
|
31 |
+
num_workers=2,
|
32 |
+
persistent_workers=True,
|
33 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
34 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
35 |
+
dataset=dict(
|
36 |
+
type='RepeatDataset',
|
37 |
+
times=2,
|
38 |
+
dataset=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
data_root=data_root,
|
41 |
+
ann_file='Anno/segmentation/DeepFashion_segmentation_train.json',
|
42 |
+
data_prefix=dict(img='Img/'),
|
43 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
44 |
+
pipeline=train_pipeline)))
|
45 |
+
val_dataloader = dict(
|
46 |
+
batch_size=1,
|
47 |
+
num_workers=2,
|
48 |
+
persistent_workers=True,
|
49 |
+
drop_last=False,
|
50 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
51 |
+
dataset=dict(
|
52 |
+
type=dataset_type,
|
53 |
+
data_root=data_root,
|
54 |
+
ann_file='Anno/segmentation/DeepFashion_segmentation_query.json',
|
55 |
+
data_prefix=dict(img='Img/'),
|
56 |
+
test_mode=True,
|
57 |
+
pipeline=test_pipeline))
|
58 |
+
test_dataloader = dict(
|
59 |
+
batch_size=1,
|
60 |
+
num_workers=2,
|
61 |
+
persistent_workers=True,
|
62 |
+
drop_last=False,
|
63 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
64 |
+
dataset=dict(
|
65 |
+
type=dataset_type,
|
66 |
+
data_root=data_root,
|
67 |
+
ann_file='Anno/segmentation/DeepFashion_segmentation_gallery.json',
|
68 |
+
data_prefix=dict(img='Img/'),
|
69 |
+
test_mode=True,
|
70 |
+
pipeline=test_pipeline))
|
71 |
+
|
72 |
+
val_evaluator = dict(
|
73 |
+
type='CocoMetric',
|
74 |
+
ann_file=data_root +
|
75 |
+
'Anno/segmentation/DeepFashion_segmentation_query.json',
|
76 |
+
metric=['bbox', 'segm'],
|
77 |
+
format_only=False)
|
78 |
+
test_evaluator = dict(
|
79 |
+
type='CocoMetric',
|
80 |
+
ann_file=data_root +
|
81 |
+
'Anno/segmentation/DeepFashion_segmentation_gallery.json',
|
82 |
+
metric=['bbox', 'segm'],
|
83 |
+
format_only=False)
|
configs/_base_/datasets/imagenet21k_bs128.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet21k'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=21842,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(type='RandomResizedCrop', scale=224),
|
15 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
16 |
+
dict(type='PackClsInputs'),
|
17 |
+
]
|
18 |
+
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(type='ResizeEdge', scale=256, edge='short'),
|
22 |
+
dict(type='CenterCrop', crop_size=224),
|
23 |
+
dict(type='PackClsInputs'),
|
24 |
+
]
|
25 |
+
|
26 |
+
train_dataloader = dict(
|
27 |
+
batch_size=128,
|
28 |
+
num_workers=5,
|
29 |
+
dataset=dict(
|
30 |
+
type=dataset_type,
|
31 |
+
data_root='data/imagenet21k',
|
32 |
+
ann_file='meta/train.txt',
|
33 |
+
data_prefix='train',
|
34 |
+
pipeline=train_pipeline),
|
35 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
36 |
+
)
|
37 |
+
|
38 |
+
val_dataloader = dict(
|
39 |
+
batch_size=128,
|
40 |
+
num_workers=5,
|
41 |
+
dataset=dict(
|
42 |
+
type=dataset_type,
|
43 |
+
data_root='data/imagenet21k',
|
44 |
+
ann_file='meta/val.txt',
|
45 |
+
data_prefix='val',
|
46 |
+
pipeline=test_pipeline),
|
47 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
48 |
+
)
|
49 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
50 |
+
|
51 |
+
# If you want standard test, please manually configure the test dataset
|
52 |
+
test_dataloader = val_dataloader
|
53 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs128_mbv3.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
|
18 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
19 |
+
dict(
|
20 |
+
type='AutoAugment',
|
21 |
+
policies='imagenet',
|
22 |
+
hparams=dict(pad_val=[round(x) for x in bgr_mean])),
|
23 |
+
dict(
|
24 |
+
type='RandomErasing',
|
25 |
+
erase_prob=0.2,
|
26 |
+
mode='rand',
|
27 |
+
min_area_ratio=0.02,
|
28 |
+
max_area_ratio=1 / 3,
|
29 |
+
fill_color=bgr_mean,
|
30 |
+
fill_std=bgr_std),
|
31 |
+
dict(type='PackClsInputs'),
|
32 |
+
]
|
33 |
+
|
34 |
+
test_pipeline = [
|
35 |
+
dict(type='LoadImageFromFile'),
|
36 |
+
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
|
37 |
+
dict(type='CenterCrop', crop_size=224),
|
38 |
+
dict(type='PackClsInputs'),
|
39 |
+
]
|
40 |
+
|
41 |
+
train_dataloader = dict(
|
42 |
+
batch_size=128,
|
43 |
+
num_workers=5,
|
44 |
+
dataset=dict(
|
45 |
+
type=dataset_type,
|
46 |
+
data_root='data/imagenet',
|
47 |
+
ann_file='meta/train.txt',
|
48 |
+
data_prefix='train',
|
49 |
+
pipeline=train_pipeline),
|
50 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
51 |
+
)
|
52 |
+
|
53 |
+
val_dataloader = dict(
|
54 |
+
batch_size=128,
|
55 |
+
num_workers=5,
|
56 |
+
dataset=dict(
|
57 |
+
type=dataset_type,
|
58 |
+
data_root='data/imagenet',
|
59 |
+
ann_file='meta/val.txt',
|
60 |
+
data_prefix='val',
|
61 |
+
pipeline=test_pipeline),
|
62 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
63 |
+
)
|
64 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
65 |
+
|
66 |
+
# If you want standard test, please manually configure the test dataset
|
67 |
+
test_dataloader = val_dataloader
|
68 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs128_poolformer_medium_224.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=236,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=224),
|
52 |
+
dict(type='PackClsInputs'),
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=128,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=128,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs128_poolformer_small_224.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=248,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=224),
|
52 |
+
dict(type='PackClsInputs'),
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=128,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=128,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs128_revvit_224.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=7,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
|
33 |
+
dict(
|
34 |
+
type='RandomErasing',
|
35 |
+
erase_prob=0.25,
|
36 |
+
mode='rand', # should be 'pixel', but currently not supported
|
37 |
+
min_area_ratio=0.02,
|
38 |
+
max_area_ratio=1 / 3,
|
39 |
+
fill_color=bgr_mean,
|
40 |
+
fill_std=bgr_std),
|
41 |
+
dict(type='PackClsInputs'),
|
42 |
+
]
|
43 |
+
|
44 |
+
test_pipeline = [
|
45 |
+
dict(type='LoadImageFromFile'),
|
46 |
+
dict(
|
47 |
+
type='ResizeEdge',
|
48 |
+
scale=256,
|
49 |
+
edge='short',
|
50 |
+
backend='pillow',
|
51 |
+
interpolation='bicubic'),
|
52 |
+
dict(type='CenterCrop', crop_size=224),
|
53 |
+
dict(type='PackClsInputs'),
|
54 |
+
]
|
55 |
+
|
56 |
+
train_dataloader = dict(
|
57 |
+
batch_size=256,
|
58 |
+
num_workers=5,
|
59 |
+
dataset=dict(
|
60 |
+
type=dataset_type,
|
61 |
+
data_root='data/imagenet',
|
62 |
+
ann_file='meta/train.txt',
|
63 |
+
data_prefix='train',
|
64 |
+
pipeline=train_pipeline),
|
65 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
66 |
+
persistent_workers=True,
|
67 |
+
)
|
68 |
+
|
69 |
+
val_dataloader = dict(
|
70 |
+
batch_size=64,
|
71 |
+
num_workers=5,
|
72 |
+
dataset=dict(
|
73 |
+
type=dataset_type,
|
74 |
+
data_root='data/imagenet',
|
75 |
+
# ann_file='meta/val.txt',
|
76 |
+
data_prefix='val',
|
77 |
+
pipeline=test_pipeline),
|
78 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
79 |
+
persistent_workers=True,
|
80 |
+
)
|
81 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
82 |
+
|
83 |
+
# If you want standard test, please manually configure the test dataset
|
84 |
+
test_dataloader = val_dataloader
|
85 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs16_eva_196.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
7 |
+
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(
|
15 |
+
type='RandomResizedCrop',
|
16 |
+
scale=196,
|
17 |
+
backend='pillow',
|
18 |
+
interpolation='bicubic'),
|
19 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
20 |
+
dict(type='PackClsInputs'),
|
21 |
+
]
|
22 |
+
|
23 |
+
test_pipeline = [
|
24 |
+
dict(type='LoadImageFromFile'),
|
25 |
+
dict(
|
26 |
+
type='ResizeEdge',
|
27 |
+
scale=196,
|
28 |
+
edge='short',
|
29 |
+
backend='pillow',
|
30 |
+
interpolation='bicubic'),
|
31 |
+
dict(type='CenterCrop', crop_size=196),
|
32 |
+
dict(type='PackClsInputs'),
|
33 |
+
]
|
34 |
+
|
35 |
+
train_dataloader = dict(
|
36 |
+
batch_size=16,
|
37 |
+
num_workers=5,
|
38 |
+
dataset=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
data_root='data/imagenet',
|
41 |
+
ann_file='meta/train.txt',
|
42 |
+
data_prefix='train',
|
43 |
+
pipeline=train_pipeline),
|
44 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
45 |
+
)
|
46 |
+
|
47 |
+
val_dataloader = dict(
|
48 |
+
batch_size=16,
|
49 |
+
num_workers=5,
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root='data/imagenet',
|
53 |
+
ann_file='meta/val.txt',
|
54 |
+
data_prefix='val',
|
55 |
+
pipeline=test_pipeline),
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
)
|
58 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
59 |
+
|
60 |
+
# If you want standard test, please manually configure the test dataset
|
61 |
+
test_dataloader = val_dataloader
|
62 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs16_eva_336.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
7 |
+
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(
|
15 |
+
type='RandomResizedCrop',
|
16 |
+
scale=336,
|
17 |
+
backend='pillow',
|
18 |
+
interpolation='bicubic'),
|
19 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
20 |
+
dict(type='PackClsInputs'),
|
21 |
+
]
|
22 |
+
|
23 |
+
test_pipeline = [
|
24 |
+
dict(type='LoadImageFromFile'),
|
25 |
+
dict(
|
26 |
+
type='ResizeEdge',
|
27 |
+
scale=336,
|
28 |
+
edge='short',
|
29 |
+
backend='pillow',
|
30 |
+
interpolation='bicubic'),
|
31 |
+
dict(type='CenterCrop', crop_size=336),
|
32 |
+
dict(type='PackClsInputs'),
|
33 |
+
]
|
34 |
+
|
35 |
+
train_dataloader = dict(
|
36 |
+
batch_size=16,
|
37 |
+
num_workers=5,
|
38 |
+
dataset=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
data_root='data/imagenet',
|
41 |
+
ann_file='meta/train.txt',
|
42 |
+
data_prefix='train',
|
43 |
+
pipeline=train_pipeline),
|
44 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
45 |
+
)
|
46 |
+
|
47 |
+
val_dataloader = dict(
|
48 |
+
batch_size=16,
|
49 |
+
num_workers=5,
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root='data/imagenet',
|
53 |
+
ann_file='meta/val.txt',
|
54 |
+
data_prefix='val',
|
55 |
+
pipeline=test_pipeline),
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
)
|
58 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
59 |
+
|
60 |
+
# If you want standard test, please manually configure the test dataset
|
61 |
+
test_dataloader = val_dataloader
|
62 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs16_eva_560.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
7 |
+
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(
|
15 |
+
type='RandomResizedCrop',
|
16 |
+
scale=560,
|
17 |
+
backend='pillow',
|
18 |
+
interpolation='bicubic'),
|
19 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
20 |
+
dict(type='PackClsInputs'),
|
21 |
+
]
|
22 |
+
|
23 |
+
test_pipeline = [
|
24 |
+
dict(type='LoadImageFromFile'),
|
25 |
+
dict(
|
26 |
+
type='ResizeEdge',
|
27 |
+
scale=560,
|
28 |
+
edge='short',
|
29 |
+
backend='pillow',
|
30 |
+
interpolation='bicubic'),
|
31 |
+
dict(type='CenterCrop', crop_size=560),
|
32 |
+
dict(type='PackClsInputs'),
|
33 |
+
]
|
34 |
+
|
35 |
+
train_dataloader = dict(
|
36 |
+
batch_size=16,
|
37 |
+
num_workers=5,
|
38 |
+
dataset=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
data_root='data/imagenet',
|
41 |
+
ann_file='meta/train.txt',
|
42 |
+
data_prefix='train',
|
43 |
+
pipeline=train_pipeline),
|
44 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
45 |
+
)
|
46 |
+
|
47 |
+
val_dataloader = dict(
|
48 |
+
batch_size=16,
|
49 |
+
num_workers=5,
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root='data/imagenet',
|
53 |
+
ann_file='meta/val.txt',
|
54 |
+
data_prefix='val',
|
55 |
+
pipeline=test_pipeline),
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
)
|
58 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
59 |
+
|
60 |
+
# If you want standard test, please manually configure the test dataset
|
61 |
+
test_dataloader = val_dataloader
|
62 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs16_pil_bicubic_384.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
# RGB format normalization parameters
|
5 |
+
mean=[123.675, 116.28, 103.53],
|
6 |
+
std=[58.395, 57.12, 57.375],
|
7 |
+
# convert image from BGR to RGB
|
8 |
+
to_rgb=True,
|
9 |
+
)
|
10 |
+
|
11 |
+
train_pipeline = [
|
12 |
+
dict(type='LoadImageFromFile'),
|
13 |
+
dict(
|
14 |
+
type='RandomResizedCrop',
|
15 |
+
scale=384,
|
16 |
+
backend='pillow',
|
17 |
+
interpolation='bicubic'),
|
18 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
19 |
+
dict(type='PackClsInputs'),
|
20 |
+
]
|
21 |
+
|
22 |
+
test_pipeline = [
|
23 |
+
dict(type='LoadImageFromFile'),
|
24 |
+
dict(type='Resize', scale=384, backend='pillow', interpolation='bicubic'),
|
25 |
+
dict(type='PackClsInputs'),
|
26 |
+
]
|
27 |
+
|
28 |
+
train_dataloader = dict(
|
29 |
+
batch_size=16,
|
30 |
+
num_workers=5,
|
31 |
+
dataset=dict(
|
32 |
+
type=dataset_type,
|
33 |
+
data_root='data/imagenet',
|
34 |
+
ann_file='meta/train.txt',
|
35 |
+
data_prefix='train',
|
36 |
+
pipeline=train_pipeline),
|
37 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
38 |
+
)
|
39 |
+
|
40 |
+
val_dataloader = dict(
|
41 |
+
batch_size=16,
|
42 |
+
num_workers=5,
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root='data/imagenet',
|
46 |
+
ann_file='meta/val.txt',
|
47 |
+
data_prefix='val',
|
48 |
+
pipeline=test_pipeline),
|
49 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
50 |
+
)
|
51 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
52 |
+
|
53 |
+
# If you want standard test, please manually configure the test dataset
|
54 |
+
test_dataloader = val_dataloader
|
55 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs256_davit_224.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=236,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=224),
|
52 |
+
dict(type='PackClsInputs'),
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=64,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs256_rsb_a12.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=7,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(type='PackClsInputs'),
|
33 |
+
]
|
34 |
+
|
35 |
+
test_pipeline = [
|
36 |
+
dict(type='LoadImageFromFile'),
|
37 |
+
dict(
|
38 |
+
type='ResizeEdge',
|
39 |
+
scale=236,
|
40 |
+
edge='short',
|
41 |
+
backend='pillow',
|
42 |
+
interpolation='bicubic'),
|
43 |
+
dict(type='CenterCrop', crop_size=224),
|
44 |
+
dict(type='PackClsInputs')
|
45 |
+
]
|
46 |
+
|
47 |
+
train_dataloader = dict(
|
48 |
+
batch_size=256,
|
49 |
+
num_workers=5,
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root='data/imagenet',
|
53 |
+
ann_file='meta/train.txt',
|
54 |
+
data_prefix='train',
|
55 |
+
pipeline=train_pipeline),
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
57 |
+
)
|
58 |
+
|
59 |
+
val_dataloader = dict(
|
60 |
+
batch_size=256,
|
61 |
+
num_workers=5,
|
62 |
+
dataset=dict(
|
63 |
+
type=dataset_type,
|
64 |
+
data_root='data/imagenet',
|
65 |
+
ann_file='meta/val.txt',
|
66 |
+
data_prefix='val',
|
67 |
+
pipeline=test_pipeline),
|
68 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
69 |
+
)
|
70 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
71 |
+
|
72 |
+
# If you want standard test, please manually configure the test dataset
|
73 |
+
test_dataloader = val_dataloader
|
74 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs256_rsb_a3.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=6,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(type='PackClsInputs'),
|
33 |
+
]
|
34 |
+
|
35 |
+
test_pipeline = [
|
36 |
+
dict(type='LoadImageFromFile'),
|
37 |
+
dict(
|
38 |
+
type='ResizeEdge',
|
39 |
+
scale=236,
|
40 |
+
edge='short',
|
41 |
+
backend='pillow',
|
42 |
+
interpolation='bicubic'),
|
43 |
+
dict(type='CenterCrop', crop_size=224),
|
44 |
+
dict(type='PackClsInputs')
|
45 |
+
]
|
46 |
+
|
47 |
+
train_dataloader = dict(
|
48 |
+
batch_size=256,
|
49 |
+
num_workers=5,
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root='data/imagenet',
|
53 |
+
ann_file='meta/train.txt',
|
54 |
+
data_prefix='train',
|
55 |
+
pipeline=train_pipeline),
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
57 |
+
)
|
58 |
+
|
59 |
+
val_dataloader = dict(
|
60 |
+
batch_size=256,
|
61 |
+
num_workers=5,
|
62 |
+
dataset=dict(
|
63 |
+
type=dataset_type,
|
64 |
+
data_root='data/imagenet',
|
65 |
+
ann_file='meta/val.txt',
|
66 |
+
data_prefix='val',
|
67 |
+
pipeline=test_pipeline),
|
68 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
69 |
+
)
|
70 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
71 |
+
|
72 |
+
# If you want standard test, please manually configure the test dataset
|
73 |
+
test_dataloader = val_dataloader
|
74 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs32.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(type='RandomResizedCrop', scale=224),
|
15 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
16 |
+
dict(type='PackClsInputs'),
|
17 |
+
]
|
18 |
+
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(type='ResizeEdge', scale=256, edge='short'),
|
22 |
+
dict(type='CenterCrop', crop_size=224),
|
23 |
+
dict(type='PackClsInputs'),
|
24 |
+
]
|
25 |
+
|
26 |
+
train_dataloader = dict(
|
27 |
+
batch_size=32,
|
28 |
+
num_workers=5,
|
29 |
+
dataset=dict(
|
30 |
+
type=dataset_type,
|
31 |
+
data_root='data/imagenet',
|
32 |
+
ann_file='meta/train.txt',
|
33 |
+
data_prefix='train',
|
34 |
+
pipeline=train_pipeline),
|
35 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
36 |
+
)
|
37 |
+
|
38 |
+
val_dataloader = dict(
|
39 |
+
batch_size=32,
|
40 |
+
num_workers=5,
|
41 |
+
dataset=dict(
|
42 |
+
type=dataset_type,
|
43 |
+
data_root='data/imagenet',
|
44 |
+
ann_file='meta/val.txt',
|
45 |
+
data_prefix='val',
|
46 |
+
pipeline=test_pipeline),
|
47 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
48 |
+
)
|
49 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
50 |
+
|
51 |
+
# If you want standard test, please manually configure the test dataset
|
52 |
+
test_dataloader = val_dataloader
|
53 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs32_pil_bicubic.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(
|
15 |
+
type='RandomResizedCrop',
|
16 |
+
scale=224,
|
17 |
+
backend='pillow',
|
18 |
+
interpolation='bicubic'),
|
19 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
20 |
+
dict(type='PackClsInputs'),
|
21 |
+
]
|
22 |
+
|
23 |
+
test_pipeline = [
|
24 |
+
dict(type='LoadImageFromFile'),
|
25 |
+
dict(
|
26 |
+
type='ResizeEdge',
|
27 |
+
scale=256,
|
28 |
+
edge='short',
|
29 |
+
backend='pillow',
|
30 |
+
interpolation='bicubic'),
|
31 |
+
dict(type='CenterCrop', crop_size=224),
|
32 |
+
dict(type='PackClsInputs'),
|
33 |
+
]
|
34 |
+
|
35 |
+
train_dataloader = dict(
|
36 |
+
batch_size=32,
|
37 |
+
num_workers=5,
|
38 |
+
dataset=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
data_root='data/imagenet',
|
41 |
+
ann_file='meta/train.txt',
|
42 |
+
data_prefix='train',
|
43 |
+
pipeline=train_pipeline),
|
44 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
45 |
+
)
|
46 |
+
|
47 |
+
val_dataloader = dict(
|
48 |
+
batch_size=32,
|
49 |
+
num_workers=5,
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root='data/imagenet',
|
53 |
+
ann_file='meta/val.txt',
|
54 |
+
data_prefix='val',
|
55 |
+
pipeline=test_pipeline),
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
)
|
58 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
59 |
+
|
60 |
+
# If you want standard test, please manually configure the test dataset
|
61 |
+
test_dataloader = val_dataloader
|
62 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs32_pil_resize.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
|
15 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
16 |
+
dict(type='PackClsInputs'),
|
17 |
+
]
|
18 |
+
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
|
22 |
+
dict(type='CenterCrop', crop_size=224),
|
23 |
+
dict(type='PackClsInputs'),
|
24 |
+
]
|
25 |
+
|
26 |
+
train_dataloader = dict(
|
27 |
+
batch_size=32,
|
28 |
+
num_workers=5,
|
29 |
+
dataset=dict(
|
30 |
+
type=dataset_type,
|
31 |
+
data_root='data/imagenet',
|
32 |
+
ann_file='meta/train.txt',
|
33 |
+
data_prefix='train',
|
34 |
+
pipeline=train_pipeline),
|
35 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
36 |
+
)
|
37 |
+
|
38 |
+
val_dataloader = dict(
|
39 |
+
batch_size=32,
|
40 |
+
num_workers=5,
|
41 |
+
dataset=dict(
|
42 |
+
type=dataset_type,
|
43 |
+
data_root='data/imagenet',
|
44 |
+
ann_file='meta/val.txt',
|
45 |
+
data_prefix='val',
|
46 |
+
pipeline=test_pipeline),
|
47 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
48 |
+
)
|
49 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
50 |
+
|
51 |
+
# If you want standard test, please manually configure the test dataset
|
52 |
+
test_dataloader = val_dataloader
|
53 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(type='RandomResizedCrop', scale=224),
|
15 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
16 |
+
dict(type='PackClsInputs'),
|
17 |
+
]
|
18 |
+
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(type='ResizeEdge', scale=256, edge='short'),
|
22 |
+
dict(type='CenterCrop', crop_size=224),
|
23 |
+
dict(type='PackClsInputs'),
|
24 |
+
]
|
25 |
+
|
26 |
+
train_dataloader = dict(
|
27 |
+
batch_size=64,
|
28 |
+
num_workers=5,
|
29 |
+
dataset=dict(
|
30 |
+
type=dataset_type,
|
31 |
+
data_root='data/imagenet',
|
32 |
+
ann_file='meta/train.txt',
|
33 |
+
data_prefix='train',
|
34 |
+
pipeline=train_pipeline),
|
35 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
36 |
+
)
|
37 |
+
|
38 |
+
val_dataloader = dict(
|
39 |
+
batch_size=64,
|
40 |
+
num_workers=5,
|
41 |
+
dataset=dict(
|
42 |
+
type=dataset_type,
|
43 |
+
data_root='data/imagenet',
|
44 |
+
ann_file='meta/val.txt',
|
45 |
+
data_prefix='val',
|
46 |
+
pipeline=test_pipeline),
|
47 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
48 |
+
)
|
49 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
50 |
+
|
51 |
+
# If you want standard test, please manually configure the test dataset
|
52 |
+
test_dataloader = val_dataloader
|
53 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_autoaug.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(type='RandomResizedCrop', scale=224),
|
18 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
19 |
+
dict(
|
20 |
+
type='AutoAugment',
|
21 |
+
policies='imagenet',
|
22 |
+
hparams=dict(
|
23 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
24 |
+
dict(type='PackClsInputs'),
|
25 |
+
]
|
26 |
+
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile'),
|
29 |
+
dict(type='ResizeEdge', scale=256, edge='short'),
|
30 |
+
dict(type='CenterCrop', crop_size=224),
|
31 |
+
dict(type='PackClsInputs'),
|
32 |
+
]
|
33 |
+
|
34 |
+
train_dataloader = dict(
|
35 |
+
batch_size=64,
|
36 |
+
num_workers=5,
|
37 |
+
dataset=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
data_root='data/imagenet',
|
40 |
+
ann_file='meta/train.txt',
|
41 |
+
data_prefix='train',
|
42 |
+
pipeline=train_pipeline),
|
43 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
44 |
+
)
|
45 |
+
|
46 |
+
val_dataloader = dict(
|
47 |
+
batch_size=64,
|
48 |
+
num_workers=5,
|
49 |
+
dataset=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root='data/imagenet',
|
52 |
+
ann_file='meta/val.txt',
|
53 |
+
data_prefix='val',
|
54 |
+
pipeline=test_pipeline),
|
55 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
56 |
+
)
|
57 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
58 |
+
|
59 |
+
# If you want standard test, please manually configure the test dataset
|
60 |
+
test_dataloader = val_dataloader
|
61 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_clip_224.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
5 |
+
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
6 |
+
to_rgb=True)
|
7 |
+
image_size = 224
|
8 |
+
train_pipeline = [
|
9 |
+
dict(type='LoadImageFromFile'),
|
10 |
+
dict(
|
11 |
+
type='RandomResizedCrop',
|
12 |
+
size=image_size,
|
13 |
+
backend='pillow',
|
14 |
+
interpolation='bicubic'),
|
15 |
+
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
16 |
+
# dict(
|
17 |
+
# type='RandAugment',
|
18 |
+
# policies={{_base_.rand_increasing_policies}},
|
19 |
+
# num_policies=2,
|
20 |
+
# total_level=10,
|
21 |
+
# magnitude_level=9,
|
22 |
+
# magnitude_std=0.5,
|
23 |
+
# hparams=dict(
|
24 |
+
# pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
|
25 |
+
# interpolation='bicubic')),
|
26 |
+
dict(
|
27 |
+
type='RandomErasing',
|
28 |
+
erase_prob=0.25,
|
29 |
+
mode='rand',
|
30 |
+
min_area_ratio=0.02,
|
31 |
+
max_area_ratio=1 / 3,
|
32 |
+
fill_color=img_norm_cfg['mean'][::-1],
|
33 |
+
fill_std=img_norm_cfg['std'][::-1]),
|
34 |
+
dict(type='Normalize', **img_norm_cfg),
|
35 |
+
dict(type='ImageToTensor', keys=['img']),
|
36 |
+
dict(type='ToTensor', keys=['gt_label']),
|
37 |
+
dict(type='Collect', keys=['img', 'gt_label'])
|
38 |
+
]
|
39 |
+
|
40 |
+
test_pipeline = [
|
41 |
+
dict(type='LoadImageFromFile'),
|
42 |
+
dict(
|
43 |
+
type='Resize',
|
44 |
+
size=(image_size, -1),
|
45 |
+
backend='pillow',
|
46 |
+
interpolation='bicubic'),
|
47 |
+
dict(type='CenterCrop', crop_size=image_size),
|
48 |
+
dict(type='Normalize', **img_norm_cfg),
|
49 |
+
dict(type='ImageToTensor', keys=['img']),
|
50 |
+
dict(type='Collect', keys=['img'])
|
51 |
+
]
|
52 |
+
|
53 |
+
data = dict(
|
54 |
+
samples_per_gpu=64,
|
55 |
+
workers_per_gpu=8,
|
56 |
+
train=dict(
|
57 |
+
type=dataset_type,
|
58 |
+
data_prefix='data/imagenet/train',
|
59 |
+
pipeline=train_pipeline),
|
60 |
+
val=dict(
|
61 |
+
type=dataset_type,
|
62 |
+
data_prefix='data/imagenet/val',
|
63 |
+
ann_file='data/imagenet/meta/val.txt',
|
64 |
+
pipeline=test_pipeline),
|
65 |
+
test=dict(
|
66 |
+
# replace `data/val` with `data/test` for standard test
|
67 |
+
type=dataset_type,
|
68 |
+
data_prefix='data/imagenet/val',
|
69 |
+
ann_file='data/imagenet/meta/val.txt',
|
70 |
+
pipeline=test_pipeline))
|
71 |
+
|
72 |
+
evaluation = dict(interval=10, metric='accuracy')
|
configs/_base_/datasets/imagenet_bs64_clip_384.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
5 |
+
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
6 |
+
to_rgb=True)
|
7 |
+
image_size = 384
|
8 |
+
train_pipeline = [
|
9 |
+
dict(type='LoadImageFromFile'),
|
10 |
+
dict(
|
11 |
+
type='RandomResizedCrop',
|
12 |
+
size=image_size,
|
13 |
+
backend='pillow',
|
14 |
+
interpolation='bicubic'),
|
15 |
+
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
16 |
+
# dict(
|
17 |
+
# type='RandAugment',
|
18 |
+
# policies={{_base_.rand_increasing_policies}},
|
19 |
+
# num_policies=2,
|
20 |
+
# total_level=10,
|
21 |
+
# magnitude_level=9,
|
22 |
+
# magnitude_std=0.5,
|
23 |
+
# hparams=dict(
|
24 |
+
# pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
|
25 |
+
# interpolation='bicubic')),
|
26 |
+
dict(
|
27 |
+
type='RandomErasing',
|
28 |
+
erase_prob=0.25,
|
29 |
+
mode='rand',
|
30 |
+
min_area_ratio=0.02,
|
31 |
+
max_area_ratio=1 / 3,
|
32 |
+
fill_color=img_norm_cfg['mean'][::-1],
|
33 |
+
fill_std=img_norm_cfg['std'][::-1]),
|
34 |
+
dict(type='Normalize', **img_norm_cfg),
|
35 |
+
dict(type='ImageToTensor', keys=['img']),
|
36 |
+
dict(type='ToTensor', keys=['gt_label']),
|
37 |
+
dict(type='Collect', keys=['img', 'gt_label'])
|
38 |
+
]
|
39 |
+
|
40 |
+
test_pipeline = [
|
41 |
+
dict(type='LoadImageFromFile'),
|
42 |
+
dict(
|
43 |
+
type='Resize',
|
44 |
+
size=(image_size, -1),
|
45 |
+
backend='pillow',
|
46 |
+
interpolation='bicubic'),
|
47 |
+
dict(type='CenterCrop', crop_size=image_size),
|
48 |
+
dict(type='Normalize', **img_norm_cfg),
|
49 |
+
dict(type='ImageToTensor', keys=['img']),
|
50 |
+
dict(type='Collect', keys=['img'])
|
51 |
+
]
|
52 |
+
|
53 |
+
data = dict(
|
54 |
+
samples_per_gpu=64,
|
55 |
+
workers_per_gpu=8,
|
56 |
+
train=dict(
|
57 |
+
type=dataset_type,
|
58 |
+
data_prefix='data/imagenet/train',
|
59 |
+
pipeline=train_pipeline),
|
60 |
+
val=dict(
|
61 |
+
type=dataset_type,
|
62 |
+
data_prefix='data/imagenet/val',
|
63 |
+
ann_file='data/imagenet/meta/val.txt',
|
64 |
+
pipeline=test_pipeline),
|
65 |
+
test=dict(
|
66 |
+
# replace `data/val` with `data/test` for standard test
|
67 |
+
type=dataset_type,
|
68 |
+
data_prefix='data/imagenet/val',
|
69 |
+
ann_file='data/imagenet/meta/val.txt',
|
70 |
+
pipeline=test_pipeline))
|
71 |
+
|
72 |
+
evaluation = dict(interval=10, metric='accuracy')
|
configs/_base_/datasets/imagenet_bs64_clip_448.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
5 |
+
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
6 |
+
to_rgb=True)
|
7 |
+
image_size = 448
|
8 |
+
|
9 |
+
train_pipeline = [
|
10 |
+
dict(type='LoadImageFromFile'),
|
11 |
+
dict(
|
12 |
+
type='RandomResizedCrop',
|
13 |
+
size=image_size,
|
14 |
+
backend='pillow',
|
15 |
+
interpolation='bicubic'),
|
16 |
+
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
17 |
+
# dict(
|
18 |
+
# type='RandAugment',
|
19 |
+
# policies={{_base_.rand_increasing_policies}},
|
20 |
+
# num_policies=2,
|
21 |
+
# total_level=10,
|
22 |
+
# magnitude_level=9,
|
23 |
+
# magnitude_std=0.5,
|
24 |
+
# hparams=dict(
|
25 |
+
# pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
|
26 |
+
# interpolation='bicubic')),
|
27 |
+
dict(
|
28 |
+
type='RandomErasing',
|
29 |
+
erase_prob=0.25,
|
30 |
+
mode='rand',
|
31 |
+
min_area_ratio=0.02,
|
32 |
+
max_area_ratio=1 / 3,
|
33 |
+
fill_color=img_norm_cfg['mean'][::-1],
|
34 |
+
fill_std=img_norm_cfg['std'][::-1]),
|
35 |
+
dict(type='Normalize', **img_norm_cfg),
|
36 |
+
dict(type='ImageToTensor', keys=['img']),
|
37 |
+
dict(type='ToTensor', keys=['gt_label']),
|
38 |
+
dict(type='Collect', keys=['img', 'gt_label'])
|
39 |
+
]
|
40 |
+
|
41 |
+
test_pipeline = [
|
42 |
+
dict(type='LoadImageFromFile'),
|
43 |
+
dict(
|
44 |
+
type='Resize',
|
45 |
+
size=(image_size, -1),
|
46 |
+
backend='pillow',
|
47 |
+
interpolation='bicubic'),
|
48 |
+
dict(type='CenterCrop', crop_size=image_size),
|
49 |
+
dict(type='Normalize', **img_norm_cfg),
|
50 |
+
dict(type='ImageToTensor', keys=['img']),
|
51 |
+
dict(type='Collect', keys=['img'])
|
52 |
+
]
|
53 |
+
|
54 |
+
data = dict(
|
55 |
+
samples_per_gpu=64,
|
56 |
+
workers_per_gpu=8,
|
57 |
+
train=dict(
|
58 |
+
type=dataset_type,
|
59 |
+
data_prefix='data/imagenet/train',
|
60 |
+
pipeline=train_pipeline),
|
61 |
+
val=dict(
|
62 |
+
type=dataset_type,
|
63 |
+
data_prefix='data/imagenet/val',
|
64 |
+
ann_file='data/imagenet/meta/val.txt',
|
65 |
+
pipeline=test_pipeline),
|
66 |
+
test=dict(
|
67 |
+
# replace `data/val` with `data/test` for standard test
|
68 |
+
type=dataset_type,
|
69 |
+
data_prefix='data/imagenet/val',
|
70 |
+
ann_file='data/imagenet/meta/val.txt',
|
71 |
+
pipeline=test_pipeline))
|
72 |
+
|
73 |
+
evaluation = dict(interval=10, metric='accuracy')
|
configs/_base_/datasets/imagenet_bs64_convmixer_224.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs')
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=233,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=224),
|
52 |
+
dict(type='PackClsInputs')
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=64,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_deit3_224.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=224,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=224),
|
52 |
+
dict(type='PackClsInputs'),
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=64,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_deit3_384.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(
|
15 |
+
type='RandomResizedCrop',
|
16 |
+
scale=384,
|
17 |
+
backend='pillow',
|
18 |
+
interpolation='bicubic'),
|
19 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
20 |
+
dict(type='PackClsInputs'),
|
21 |
+
]
|
22 |
+
|
23 |
+
test_pipeline = [
|
24 |
+
dict(type='LoadImageFromFile'),
|
25 |
+
dict(
|
26 |
+
type='ResizeEdge',
|
27 |
+
scale=384,
|
28 |
+
edge='short',
|
29 |
+
backend='pillow',
|
30 |
+
interpolation='bicubic'),
|
31 |
+
dict(type='CenterCrop', crop_size=384),
|
32 |
+
dict(type='PackClsInputs'),
|
33 |
+
]
|
34 |
+
|
35 |
+
train_dataloader = dict(
|
36 |
+
batch_size=64,
|
37 |
+
num_workers=5,
|
38 |
+
dataset=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
data_root='data/imagenet',
|
41 |
+
ann_file='meta/train.txt',
|
42 |
+
data_prefix='train',
|
43 |
+
pipeline=train_pipeline),
|
44 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
45 |
+
)
|
46 |
+
|
47 |
+
val_dataloader = dict(
|
48 |
+
batch_size=64,
|
49 |
+
num_workers=5,
|
50 |
+
dataset=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
data_root='data/imagenet',
|
53 |
+
ann_file='meta/val.txt',
|
54 |
+
data_prefix='val',
|
55 |
+
pipeline=test_pipeline),
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
)
|
58 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
59 |
+
|
60 |
+
# If you want standard test, please manually configure the test dataset
|
61 |
+
test_dataloader = val_dataloader
|
62 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_edgenext_256.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=256,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=292,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=256),
|
52 |
+
dict(type='PackClsInputs')
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=64,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_mixer_224.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
|
4 |
+
# Google research usually use the below normalization setting.
|
5 |
+
data_preprocessor = dict(
|
6 |
+
num_classes=1000,
|
7 |
+
mean=[127.5, 127.5, 127.5],
|
8 |
+
std=[127.5, 127.5, 127.5],
|
9 |
+
# convert image from BGR to RGB
|
10 |
+
to_rgb=True,
|
11 |
+
)
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile'),
|
15 |
+
dict(type='RandomResizedCrop', scale=224),
|
16 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
17 |
+
dict(type='PackClsInputs'),
|
18 |
+
]
|
19 |
+
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(type='ResizeEdge', scale=256, edge='short', interpolation='bicubic'),
|
23 |
+
dict(type='CenterCrop', crop_size=224),
|
24 |
+
dict(type='PackClsInputs'),
|
25 |
+
]
|
26 |
+
|
27 |
+
train_dataloader = dict(
|
28 |
+
batch_size=64,
|
29 |
+
num_workers=5,
|
30 |
+
dataset=dict(
|
31 |
+
type=dataset_type,
|
32 |
+
data_root='data/imagenet',
|
33 |
+
ann_file='meta/train.txt',
|
34 |
+
data_prefix='train',
|
35 |
+
pipeline=train_pipeline),
|
36 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
37 |
+
)
|
38 |
+
|
39 |
+
val_dataloader = dict(
|
40 |
+
batch_size=64,
|
41 |
+
num_workers=5,
|
42 |
+
dataset=dict(
|
43 |
+
type=dataset_type,
|
44 |
+
data_root='data/imagenet',
|
45 |
+
ann_file='meta/val.txt',
|
46 |
+
data_prefix='val',
|
47 |
+
pipeline=test_pipeline),
|
48 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
49 |
+
)
|
50 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
51 |
+
|
52 |
+
# If you want standard test, please manually configure the test dataset
|
53 |
+
test_dataloader = val_dataloader
|
54 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_pil_resize.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
|
15 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
16 |
+
dict(type='PackClsInputs'),
|
17 |
+
]
|
18 |
+
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
|
22 |
+
dict(type='CenterCrop', crop_size=224),
|
23 |
+
dict(type='PackClsInputs'),
|
24 |
+
]
|
25 |
+
|
26 |
+
train_dataloader = dict(
|
27 |
+
batch_size=64,
|
28 |
+
num_workers=5,
|
29 |
+
dataset=dict(
|
30 |
+
type=dataset_type,
|
31 |
+
data_root='data/imagenet',
|
32 |
+
ann_file='meta/train.txt',
|
33 |
+
data_prefix='train',
|
34 |
+
pipeline=train_pipeline),
|
35 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
36 |
+
)
|
37 |
+
|
38 |
+
val_dataloader = dict(
|
39 |
+
batch_size=64,
|
40 |
+
num_workers=5,
|
41 |
+
dataset=dict(
|
42 |
+
type=dataset_type,
|
43 |
+
data_root='data/imagenet',
|
44 |
+
ann_file='meta/val.txt',
|
45 |
+
data_prefix='val',
|
46 |
+
pipeline=test_pipeline),
|
47 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
48 |
+
)
|
49 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
50 |
+
|
51 |
+
# If you want standard test, please manually configure the test dataset
|
52 |
+
test_dataloader = val_dataloader
|
53 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_pil_resize_autoaug.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='AutoAugment',
|
25 |
+
policies='imagenet',
|
26 |
+
hparams=dict(
|
27 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
28 |
+
dict(type='PackClsInputs'),
|
29 |
+
]
|
30 |
+
|
31 |
+
test_pipeline = [
|
32 |
+
dict(type='LoadImageFromFile'),
|
33 |
+
dict(
|
34 |
+
type='ResizeEdge',
|
35 |
+
scale=256,
|
36 |
+
edge='short',
|
37 |
+
backend='pillow',
|
38 |
+
interpolation='bicubic'),
|
39 |
+
dict(type='CenterCrop', crop_size=224),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
train_dataloader = dict(
|
44 |
+
batch_size=64,
|
45 |
+
num_workers=5,
|
46 |
+
dataset=dict(
|
47 |
+
type=dataset_type,
|
48 |
+
data_root='data/imagenet',
|
49 |
+
ann_file='meta/train.txt',
|
50 |
+
data_prefix='train',
|
51 |
+
pipeline=train_pipeline),
|
52 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
53 |
+
)
|
54 |
+
|
55 |
+
val_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/val.txt',
|
62 |
+
data_prefix='val',
|
63 |
+
pipeline=test_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
65 |
+
)
|
66 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
67 |
+
|
68 |
+
# If you want standard test, please manually configure the test dataset
|
69 |
+
test_dataloader = val_dataloader
|
70 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_swin_224.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=256,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=224),
|
52 |
+
dict(type='PackClsInputs'),
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=64,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_swin_256.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=256,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=292, # ( 256 / 224 * 256 )
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=256),
|
52 |
+
dict(type='PackClsInputs'),
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=64,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_swin_384.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
train_pipeline = [
|
13 |
+
dict(type='LoadImageFromFile'),
|
14 |
+
dict(
|
15 |
+
type='RandomResizedCrop',
|
16 |
+
scale=384,
|
17 |
+
backend='pillow',
|
18 |
+
interpolation='bicubic'),
|
19 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
20 |
+
dict(type='PackClsInputs'),
|
21 |
+
]
|
22 |
+
|
23 |
+
test_pipeline = [
|
24 |
+
dict(type='LoadImageFromFile'),
|
25 |
+
dict(type='Resize', scale=384, backend='pillow', interpolation='bicubic'),
|
26 |
+
dict(type='PackClsInputs'),
|
27 |
+
]
|
28 |
+
|
29 |
+
train_dataloader = dict(
|
30 |
+
batch_size=64,
|
31 |
+
num_workers=5,
|
32 |
+
dataset=dict(
|
33 |
+
type=dataset_type,
|
34 |
+
data_root='data/imagenet',
|
35 |
+
ann_file='meta/train.txt',
|
36 |
+
data_prefix='train',
|
37 |
+
pipeline=train_pipeline),
|
38 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
39 |
+
)
|
40 |
+
|
41 |
+
val_dataloader = dict(
|
42 |
+
batch_size=64,
|
43 |
+
num_workers=5,
|
44 |
+
dataset=dict(
|
45 |
+
type=dataset_type,
|
46 |
+
data_root='data/imagenet',
|
47 |
+
ann_file='meta/val.txt',
|
48 |
+
data_prefix='val',
|
49 |
+
pipeline=test_pipeline),
|
50 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
51 |
+
)
|
52 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
53 |
+
|
54 |
+
# If you want standard test, please manually configure the test dataset
|
55 |
+
test_dataloader = val_dataloader
|
56 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs64_t2t_224.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
num_classes=1000,
|
5 |
+
# RGB format normalization parameters
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
# convert image from BGR to RGB
|
9 |
+
to_rgb=True,
|
10 |
+
)
|
11 |
+
|
12 |
+
bgr_mean = data_preprocessor['mean'][::-1]
|
13 |
+
bgr_std = data_preprocessor['std'][::-1]
|
14 |
+
|
15 |
+
train_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='RandomResizedCrop',
|
19 |
+
scale=224,
|
20 |
+
backend='pillow',
|
21 |
+
interpolation='bicubic'),
|
22 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
23 |
+
dict(
|
24 |
+
type='RandAugment',
|
25 |
+
policies='timm_increasing',
|
26 |
+
num_policies=2,
|
27 |
+
total_level=10,
|
28 |
+
magnitude_level=9,
|
29 |
+
magnitude_std=0.5,
|
30 |
+
hparams=dict(
|
31 |
+
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
32 |
+
dict(
|
33 |
+
type='RandomErasing',
|
34 |
+
erase_prob=0.25,
|
35 |
+
mode='rand',
|
36 |
+
min_area_ratio=0.02,
|
37 |
+
max_area_ratio=1 / 3,
|
38 |
+
fill_color=bgr_mean,
|
39 |
+
fill_std=bgr_std),
|
40 |
+
dict(type='PackClsInputs'),
|
41 |
+
]
|
42 |
+
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='ResizeEdge',
|
47 |
+
scale=248,
|
48 |
+
edge='short',
|
49 |
+
backend='pillow',
|
50 |
+
interpolation='bicubic'),
|
51 |
+
dict(type='CenterCrop', crop_size=224),
|
52 |
+
dict(type='PackClsInputs'),
|
53 |
+
]
|
54 |
+
|
55 |
+
train_dataloader = dict(
|
56 |
+
batch_size=64,
|
57 |
+
num_workers=5,
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root='data/imagenet',
|
61 |
+
ann_file='meta/train.txt',
|
62 |
+
data_prefix='train',
|
63 |
+
pipeline=train_pipeline),
|
64 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
65 |
+
)
|
66 |
+
|
67 |
+
val_dataloader = dict(
|
68 |
+
batch_size=64,
|
69 |
+
num_workers=5,
|
70 |
+
dataset=dict(
|
71 |
+
type=dataset_type,
|
72 |
+
data_root='data/imagenet',
|
73 |
+
ann_file='meta/val.txt',
|
74 |
+
data_prefix='val',
|
75 |
+
pipeline=test_pipeline),
|
76 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
77 |
+
)
|
78 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
79 |
+
|
80 |
+
# If you want standard test, please manually configure the test dataset
|
81 |
+
test_dataloader = val_dataloader
|
82 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/imagenet_bs8_pil_bicubic_320.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ImageNet'
|
3 |
+
data_preprocessor = dict(
|
4 |
+
# RGB format normalization parameters
|
5 |
+
mean=[122.5, 122.5, 122.5],
|
6 |
+
std=[122.5, 122.5, 122.5],
|
7 |
+
# convert image from BGR to RGB
|
8 |
+
to_rgb=True,
|
9 |
+
)
|
10 |
+
|
11 |
+
train_pipeline = [
|
12 |
+
dict(type='LoadImageFromFile'),
|
13 |
+
dict(
|
14 |
+
type='RandomResizedCrop',
|
15 |
+
scale=320,
|
16 |
+
backend='pillow',
|
17 |
+
interpolation='bicubic'),
|
18 |
+
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
19 |
+
dict(type='PackClsInputs'),
|
20 |
+
]
|
21 |
+
|
22 |
+
test_pipeline = [
|
23 |
+
dict(type='LoadImageFromFile'),
|
24 |
+
dict(
|
25 |
+
type='ResizeEdge',
|
26 |
+
scale=int(320 / 224 * 256),
|
27 |
+
edge='short',
|
28 |
+
backend='pillow',
|
29 |
+
interpolation='bicubic'),
|
30 |
+
dict(type='CenterCrop', crop_size=320),
|
31 |
+
dict(type='PackClsInputs'),
|
32 |
+
]
|
33 |
+
|
34 |
+
train_dataloader = dict(
|
35 |
+
batch_size=8,
|
36 |
+
num_workers=5,
|
37 |
+
dataset=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
data_root='data/imagenet',
|
40 |
+
ann_file='meta/train.txt',
|
41 |
+
data_prefix='train',
|
42 |
+
pipeline=train_pipeline),
|
43 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
44 |
+
)
|
45 |
+
|
46 |
+
val_dataloader = dict(
|
47 |
+
batch_size=8,
|
48 |
+
num_workers=5,
|
49 |
+
dataset=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root='data/imagenet',
|
52 |
+
ann_file='meta/val.txt',
|
53 |
+
data_prefix='val',
|
54 |
+
pipeline=test_pipeline),
|
55 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
56 |
+
)
|
57 |
+
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
58 |
+
|
59 |
+
# If you want standard test, please manually configure the test dataset
|
60 |
+
test_dataloader = val_dataloader
|
61 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/lvis_v0.5_instance.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'LVISV05Dataset'
|
3 |
+
data_root = 'data/lvis_v0.5/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
16 |
+
dict(
|
17 |
+
type='RandomChoiceResize',
|
18 |
+
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
|
19 |
+
(1333, 768), (1333, 800)],
|
20 |
+
keep_ratio=True),
|
21 |
+
dict(type='RandomFlip', prob=0.5),
|
22 |
+
dict(type='PackDetInputs')
|
23 |
+
]
|
24 |
+
test_pipeline = [
|
25 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
26 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
27 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
28 |
+
dict(
|
29 |
+
type='PackDetInputs',
|
30 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
31 |
+
'scale_factor'))
|
32 |
+
]
|
33 |
+
|
34 |
+
train_dataloader = dict(
|
35 |
+
batch_size=2,
|
36 |
+
num_workers=2,
|
37 |
+
persistent_workers=True,
|
38 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
39 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
40 |
+
dataset=dict(
|
41 |
+
type='ClassBalancedDataset',
|
42 |
+
oversample_thr=1e-3,
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
ann_file='annotations/lvis_v0.5_train.json',
|
47 |
+
data_prefix=dict(img='train2017/'),
|
48 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
49 |
+
pipeline=train_pipeline)))
|
50 |
+
val_dataloader = dict(
|
51 |
+
batch_size=1,
|
52 |
+
num_workers=2,
|
53 |
+
persistent_workers=True,
|
54 |
+
drop_last=False,
|
55 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
56 |
+
dataset=dict(
|
57 |
+
type=dataset_type,
|
58 |
+
data_root=data_root,
|
59 |
+
ann_file='annotations/lvis_v0.5_val.json',
|
60 |
+
data_prefix=dict(img='val2017/'),
|
61 |
+
test_mode=True,
|
62 |
+
pipeline=test_pipeline))
|
63 |
+
test_dataloader = val_dataloader
|
64 |
+
|
65 |
+
val_evaluator = dict(
|
66 |
+
type='LVISMetric',
|
67 |
+
ann_file=data_root + 'annotations/lvis_v0.5_val.json',
|
68 |
+
metric=['bbox', 'segm'])
|
69 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/lvis_v1_instance.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
_base_ = 'lvis_v0.5_instance.py'
|
3 |
+
dataset_type = 'LVISV1Dataset'
|
4 |
+
data_root = 'data/lvis_v1/'
|
5 |
+
|
6 |
+
train_dataloader = dict(
|
7 |
+
dataset=dict(
|
8 |
+
dataset=dict(
|
9 |
+
type=dataset_type,
|
10 |
+
data_root=data_root,
|
11 |
+
ann_file='annotations/lvis_v1_train.json',
|
12 |
+
data_prefix=dict(img=''))))
|
13 |
+
val_dataloader = dict(
|
14 |
+
dataset=dict(
|
15 |
+
type=dataset_type,
|
16 |
+
data_root=data_root,
|
17 |
+
ann_file='annotations/lvis_v1_val.json',
|
18 |
+
data_prefix=dict(img='')))
|
19 |
+
test_dataloader = val_dataloader
|
20 |
+
|
21 |
+
val_evaluator = dict(ann_file=data_root + 'annotations/lvis_v1_val.json')
|
22 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/objects365v1_detection.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'Objects365V1Dataset'
|
3 |
+
data_root = 'data/Objects365/Obj365_v1/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
16 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
17 |
+
dict(type='RandomFlip', prob=0.5),
|
18 |
+
dict(type='PackDetInputs')
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
22 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
23 |
+
# If you don't have a gt annotation, delete the pipeline
|
24 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
25 |
+
dict(
|
26 |
+
type='PackDetInputs',
|
27 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
28 |
+
'scale_factor'))
|
29 |
+
]
|
30 |
+
train_dataloader = dict(
|
31 |
+
batch_size=2,
|
32 |
+
num_workers=2,
|
33 |
+
persistent_workers=True,
|
34 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
35 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
36 |
+
dataset=dict(
|
37 |
+
type=dataset_type,
|
38 |
+
data_root=data_root,
|
39 |
+
ann_file='annotations/objects365_train.json',
|
40 |
+
data_prefix=dict(img='train/'),
|
41 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
42 |
+
pipeline=train_pipeline))
|
43 |
+
val_dataloader = dict(
|
44 |
+
batch_size=1,
|
45 |
+
num_workers=2,
|
46 |
+
persistent_workers=True,
|
47 |
+
drop_last=False,
|
48 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
49 |
+
dataset=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root=data_root,
|
52 |
+
ann_file='annotations/objects365_val.json',
|
53 |
+
data_prefix=dict(img='val/'),
|
54 |
+
test_mode=True,
|
55 |
+
pipeline=test_pipeline))
|
56 |
+
test_dataloader = val_dataloader
|
57 |
+
|
58 |
+
val_evaluator = dict(
|
59 |
+
type='CocoMetric',
|
60 |
+
ann_file=data_root + 'annotations/objects365_val.json',
|
61 |
+
metric='bbox',
|
62 |
+
sort_categories=True,
|
63 |
+
format_only=False)
|
64 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/objects365v2_detection.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'Objects365V2Dataset'
|
3 |
+
data_root = 'data/Objects365/Obj365_v2/'
|
4 |
+
|
5 |
+
# file_client_args = dict(
|
6 |
+
# backend='petrel',
|
7 |
+
# path_mapping=dict({
|
8 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
9 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
10 |
+
# }))
|
11 |
+
file_client_args = dict(backend='disk')
|
12 |
+
|
13 |
+
train_pipeline = [
|
14 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
15 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
16 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
17 |
+
dict(type='RandomFlip', prob=0.5),
|
18 |
+
dict(type='PackDetInputs')
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
22 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
23 |
+
# If you don't have a gt annotation, delete the pipeline
|
24 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
25 |
+
dict(
|
26 |
+
type='PackDetInputs',
|
27 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
28 |
+
'scale_factor'))
|
29 |
+
]
|
30 |
+
train_dataloader = dict(
|
31 |
+
batch_size=2,
|
32 |
+
num_workers=2,
|
33 |
+
persistent_workers=True,
|
34 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
35 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
36 |
+
dataset=dict(
|
37 |
+
type=dataset_type,
|
38 |
+
data_root=data_root,
|
39 |
+
ann_file='annotations/zhiyuan_objv2_train.json',
|
40 |
+
data_prefix=dict(img='train/'),
|
41 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
42 |
+
pipeline=train_pipeline))
|
43 |
+
val_dataloader = dict(
|
44 |
+
batch_size=1,
|
45 |
+
num_workers=2,
|
46 |
+
persistent_workers=True,
|
47 |
+
drop_last=False,
|
48 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
49 |
+
dataset=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root=data_root,
|
52 |
+
ann_file='annotations/zhiyuan_objv2_val.json',
|
53 |
+
data_prefix=dict(img='val/'),
|
54 |
+
test_mode=True,
|
55 |
+
pipeline=test_pipeline))
|
56 |
+
test_dataloader = val_dataloader
|
57 |
+
|
58 |
+
val_evaluator = dict(
|
59 |
+
type='CocoMetric',
|
60 |
+
ann_file=data_root + 'annotations/zhiyuan_objv2_val.json',
|
61 |
+
metric='bbox',
|
62 |
+
format_only=False)
|
63 |
+
test_evaluator = val_evaluator
|