Spaces:
Runtime error
Runtime error
File size: 20,127 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_conv_layer, build_upsample_layer
from mmcv.ops.carafe import CARAFEPack
from mmengine.config import ConfigDict
from mmengine.model import BaseModule, ModuleList
from mmengine.structures import InstanceData
from torch import Tensor
from torch.nn.modules.utils import _pair
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.models.utils import empty_instances
from mmdet.registry import MODELS
from mmdet.structures.mask import mask_target
from mmdet.utils import ConfigType, InstanceList, OptConfigType, OptMultiConfig
BYTES_PER_FLOAT = 4
# TODO: This memory limit may be too much or too little. It would be better to
# determine it based on available resources.
GPU_MEM_LIMIT = 1024**3 # 1 GB memory limit
@MODELS.register_module()
class FCNMaskHead(BaseModule):
def __init__(self,
num_convs: int = 4,
roi_feat_size: int = 14,
in_channels: int = 256,
conv_kernel_size: int = 3,
conv_out_channels: int = 256,
num_classes: int = 80,
class_agnostic: int = False,
upsample_cfg: ConfigType = dict(
type='deconv', scale_factor=2),
conv_cfg: OptConfigType = None,
norm_cfg: OptConfigType = None,
predictor_cfg: ConfigType = dict(type='Conv'),
loss_mask: ConfigType = dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
init_cfg: OptMultiConfig = None) -> None:
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super().__init__(init_cfg=init_cfg)
self.upsample_cfg = upsample_cfg.copy()
if self.upsample_cfg['type'] not in [
None, 'deconv', 'nearest', 'bilinear', 'carafe'
]:
raise ValueError(
f'Invalid upsample method {self.upsample_cfg["type"]}, '
'accepted methods are "deconv", "nearest", "bilinear", '
'"carafe"')
self.num_convs = num_convs
# WARN: roi_feat_size is reserved and not used
self.roi_feat_size = _pair(roi_feat_size)
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.conv_out_channels = conv_out_channels
self.upsample_method = self.upsample_cfg.get('type')
self.scale_factor = self.upsample_cfg.pop('scale_factor', None)
self.num_classes = num_classes
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.predictor_cfg = predictor_cfg
self.loss_mask = MODELS.build(loss_mask)
self.convs = ModuleList()
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
upsample_in_channels = (
self.conv_out_channels if self.num_convs > 0 else in_channels)
upsample_cfg_ = self.upsample_cfg.copy()
if self.upsample_method is None:
self.upsample = None
elif self.upsample_method == 'deconv':
upsample_cfg_.update(
in_channels=upsample_in_channels,
out_channels=self.conv_out_channels,
kernel_size=self.scale_factor,
stride=self.scale_factor)
self.upsample = build_upsample_layer(upsample_cfg_)
elif self.upsample_method == 'carafe':
upsample_cfg_.update(
channels=upsample_in_channels, scale_factor=self.scale_factor)
self.upsample = build_upsample_layer(upsample_cfg_)
else:
# suppress warnings
align_corners = (None
if self.upsample_method == 'nearest' else False)
upsample_cfg_.update(
scale_factor=self.scale_factor,
mode=self.upsample_method,
align_corners=align_corners)
self.upsample = build_upsample_layer(upsample_cfg_)
out_channels = 1 if self.class_agnostic else self.num_classes
logits_in_channel = (
self.conv_out_channels
if self.upsample_method == 'deconv' else upsample_in_channels)
self.conv_logits = build_conv_layer(self.predictor_cfg,
logits_in_channel, out_channels, 1)
self.relu = nn.ReLU(inplace=True)
self.debug_imgs = None
def init_weights(self) -> None:
"""Initialize the weights."""
super().init_weights()
for m in [self.upsample, self.conv_logits]:
if m is None:
continue
elif isinstance(m, CARAFEPack):
m.init_weights()
elif hasattr(m, 'weight') and hasattr(m, 'bias'):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
nn.init.constant_(m.bias, 0)
def forward(self, x: Tensor) -> Tensor:
"""Forward features from the upstream network.
Args:
x (Tensor): Extract mask RoI features.
Returns:
Tensor: Predicted foreground masks.
"""
for conv in self.convs:
x = conv(x)
if self.upsample is not None:
x = self.upsample(x)
if self.upsample_method == 'deconv':
x = self.relu(x)
mask_preds = self.conv_logits(x)
return mask_preds
def get_targets(self, sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> Tensor:
"""Calculate the ground truth for all samples in a batch according to
the sampling_results.
Args:
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
Tensor: Mask target of each positive proposals in the image.
"""
pos_proposals = [res.pos_priors for res in sampling_results]
pos_assigned_gt_inds = [
res.pos_assigned_gt_inds for res in sampling_results
]
gt_masks = [res.masks for res in batch_gt_instances]
mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds,
gt_masks, rcnn_train_cfg)
return mask_targets
def loss_and_target(self, mask_preds: Tensor,
sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> dict:
"""Calculate the loss based on the features extracted by the mask head.
Args:
mask_preds (Tensor): Predicted foreground masks, has shape
(num_pos, num_classes, h, w).
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss and targets components.
"""
mask_targets = self.get_targets(
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=rcnn_train_cfg)
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
loss = dict()
if mask_preds.size(0) == 0:
loss_mask = mask_preds.sum()
else:
if self.class_agnostic:
loss_mask = self.loss_mask(mask_preds, mask_targets,
torch.zeros_like(pos_labels))
else:
loss_mask = self.loss_mask(mask_preds, mask_targets,
pos_labels)
loss['loss_mask'] = loss_mask
# TODO: which algorithm requires mask_targets?
return dict(loss_mask=loss, mask_targets=mask_targets)
def predict_by_feat(self,
mask_preds: Tuple[Tensor],
results_list: List[InstanceData],
batch_img_metas: List[dict],
rcnn_test_cfg: ConfigDict,
rescale: bool = False,
activate_map: bool = False) -> InstanceList:
"""Transform a batch of output features extracted from the head into
mask results.
Args:
mask_preds (tuple[Tensor]): Tuple of predicted foreground masks,
each has shape (n, num_classes, h, w).
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
batch_img_metas (list[dict]): List of image information.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
activate_map (book): Whether get results with augmentations test.
If True, the `mask_preds` will not process with sigmoid.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
assert len(mask_preds) == len(results_list) == len(batch_img_metas)
for img_id in range(len(batch_img_metas)):
img_meta = batch_img_metas[img_id]
results = results_list[img_id]
bboxes = results.bboxes
if bboxes.shape[0] == 0:
results_list[img_id] = empty_instances(
[img_meta],
bboxes.device,
task_type='mask',
instance_results=[results],
mask_thr_binary=rcnn_test_cfg.mask_thr_binary)[0]
else:
im_mask = self._predict_by_feat_single(
mask_preds=mask_preds[img_id],
bboxes=bboxes,
labels=results.labels,
img_meta=img_meta,
rcnn_test_cfg=rcnn_test_cfg,
rescale=rescale,
activate_map=activate_map)
results.masks = im_mask
return results_list
def _predict_by_feat_single(self,
mask_preds: Tensor,
bboxes: Tensor,
labels: Tensor,
img_meta: dict,
rcnn_test_cfg: ConfigDict,
rescale: bool = False,
activate_map: bool = False) -> Tensor:
"""Get segmentation masks from mask_preds and bboxes.
Args:
mask_preds (Tensor): Predicted foreground masks, has shape
(n, num_classes, h, w).
bboxes (Tensor): Predicted bboxes, has shape (n, 4)
labels (Tensor): Labels of bboxes, has shape (n, )
img_meta (dict): image information.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
activate_map (book): Whether get results with augmentations test.
If True, the `mask_preds` will not process with sigmoid.
Defaults to False.
Returns:
Tensor: Encoded masks, has shape (n, img_w, img_h)
Example:
>>> from mmengine.config import Config
>>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import * # NOQA
>>> N = 7 # N = number of extracted ROIs
>>> C, H, W = 11, 32, 32
>>> # Create example instance of FCN Mask Head.
>>> self = FCNMaskHead(num_classes=C, num_convs=0)
>>> inputs = torch.rand(N, self.in_channels, H, W)
>>> mask_preds = self.forward(inputs)
>>> # Each input is associated with some bounding box
>>> bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N)
>>> labels = torch.randint(0, C, size=(N,))
>>> rcnn_test_cfg = Config({'mask_thr_binary': 0, })
>>> ori_shape = (H * 4, W * 4)
>>> scale_factor = (1, 1)
>>> rescale = False
>>> img_meta = {'scale_factor': scale_factor,
... 'ori_shape': ori_shape}
>>> # Encoded masks are a list for each category.
>>> encoded_masks = self._get_seg_masks_single(
... mask_preds, bboxes, labels,
... img_meta, rcnn_test_cfg, rescale)
>>> assert encoded_masks.size()[0] == N
>>> assert encoded_masks.size()[1:] == ori_shape
"""
scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat(
(1, 2))
img_h, img_w = img_meta['ori_shape'][:2]
device = bboxes.device
if not activate_map:
mask_preds = mask_preds.sigmoid()
else:
# In AugTest, has been activated before
mask_preds = bboxes.new_tensor(mask_preds)
if rescale: # in-placed rescale the bboxes
bboxes /= scale_factor
else:
w_scale, h_scale = scale_factor[0, 0], scale_factor[0, 1]
img_h = np.round(img_h * h_scale.item()).astype(np.int32)
img_w = np.round(img_w * w_scale.item()).astype(np.int32)
N = len(mask_preds)
# The actual implementation split the input into chunks,
# and paste them chunk by chunk.
if device.type == 'cpu':
# CPU is most efficient when they are pasted one by one with
# skip_empty=True, so that it performs minimal number of
# operations.
num_chunks = N
else:
# GPU benefits from parallelism for larger chunks,
# but may have memory issue
# the types of img_w and img_h are np.int32,
# when the image resolution is large,
# the calculation of num_chunks will overflow.
# so we need to change the types of img_w and img_h to int.
# See https://github.com/open-mmlab/mmdetection/pull/5191
num_chunks = int(
np.ceil(N * int(img_h) * int(img_w) * BYTES_PER_FLOAT /
GPU_MEM_LIMIT))
assert (num_chunks <=
N), 'Default GPU_MEM_LIMIT is too small; try increasing it'
chunks = torch.chunk(torch.arange(N, device=device), num_chunks)
threshold = rcnn_test_cfg.mask_thr_binary
im_mask = torch.zeros(
N,
img_h,
img_w,
device=device,
dtype=torch.bool if threshold >= 0 else torch.uint8)
if not self.class_agnostic:
mask_preds = mask_preds[range(N), labels][:, None]
for inds in chunks:
masks_chunk, spatial_inds = _do_paste_mask(
mask_preds[inds],
bboxes[inds],
img_h,
img_w,
skip_empty=device.type == 'cpu')
if threshold >= 0:
masks_chunk = (masks_chunk >= threshold).to(dtype=torch.bool)
else:
# for visualization and debugging
masks_chunk = (masks_chunk * 255).to(dtype=torch.uint8)
im_mask[(inds, ) + spatial_inds] = masks_chunk
return im_mask
def _do_paste_mask(masks: Tensor,
boxes: Tensor,
img_h: int,
img_w: int,
skip_empty: bool = True) -> tuple:
"""Paste instance masks according to boxes.
This implementation is modified from
https://github.com/facebookresearch/detectron2/
Args:
masks (Tensor): N, 1, H, W
boxes (Tensor): N, 4
img_h (int): Height of the image to be pasted.
img_w (int): Width of the image to be pasted.
skip_empty (bool): Only paste masks within the region that
tightly bound all boxes, and returns the results this region only.
An important optimization for CPU.
Returns:
tuple: (Tensor, tuple). The first item is mask tensor, the second one
is the slice object.
If skip_empty == False, the whole image will be pasted. It will
return a mask of shape (N, img_h, img_w) and an empty tuple.
If skip_empty == True, only area around the mask will be pasted.
A mask of shape (N, h', w') and its start and end coordinates
in the original image will be returned.
"""
# On GPU, paste all masks together (up to chunk size)
# by using the entire image to sample the masks
# Compared to pasting them one by one,
# this has more operations but is faster on COCO-scale dataset.
device = masks.device
if skip_empty:
x0_int, y0_int = torch.clamp(
boxes.min(dim=0).values.floor()[:2] - 1,
min=0).to(dtype=torch.int32)
x1_int = torch.clamp(
boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32)
y1_int = torch.clamp(
boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32)
else:
x0_int, y0_int = 0, 0
x1_int, y1_int = img_w, img_h
x0, y0, x1, y1 = torch.split(boxes, 1, dim=1) # each is Nx1
N = masks.shape[0]
img_y = torch.arange(y0_int, y1_int, device=device).to(torch.float32) + 0.5
img_x = torch.arange(x0_int, x1_int, device=device).to(torch.float32) + 0.5
img_y = (img_y - y0) / (y1 - y0) * 2 - 1
img_x = (img_x - x0) / (x1 - x0) * 2 - 1
# img_x, img_y have shapes (N, w), (N, h)
# IsInf op is not supported with ONNX<=1.7.0
if not torch.onnx.is_in_onnx_export():
if torch.isinf(img_x).any():
inds = torch.where(torch.isinf(img_x))
img_x[inds] = 0
if torch.isinf(img_y).any():
inds = torch.where(torch.isinf(img_y))
img_y[inds] = 0
gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1))
gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1))
grid = torch.stack([gx, gy], dim=3)
img_masks = F.grid_sample(
masks.to(dtype=torch.float32), grid, align_corners=False)
if skip_empty:
return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int))
else:
return img_masks[:, 0], ()
|