KyanChen's picture
init
f549064
raw
history blame contribute delete
No virus
13.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Optional, Tuple
import torch
from torch import Tensor, nn
from torch.nn.init import normal_
from mmdet.registry import MODELS
from mmdet.structures import OptSampleList
from mmdet.utils import OptConfigType
from ..layers import (CdnQueryGenerator, DeformableDetrTransformerEncoder,
DinoTransformerDecoder, SinePositionalEncoding)
from .deformable_detr import DeformableDETR, MultiScaleDeformableAttention
@MODELS.register_module()
class DINO(DeformableDETR):
r"""Implementation of `DINO: DETR with Improved DeNoising Anchor Boxes
for End-to-End Object Detection <https://arxiv.org/abs/2203.03605>`_
Code is modified from the `official github repo
<https://github.com/IDEA-Research/DINO>`_.
Args:
dn_cfg (:obj:`ConfigDict` or dict, optional): Config of denoising
query generator. Defaults to `None`.
"""
def __init__(self, *args, dn_cfg: OptConfigType = None, **kwargs) -> None:
super().__init__(*args, **kwargs)
assert self.as_two_stage, 'as_two_stage must be True for DINO'
assert self.with_box_refine, 'with_box_refine must be True for DINO'
if dn_cfg is not None:
assert 'num_classes' not in dn_cfg and \
'num_queries' not in dn_cfg and \
'hidden_dim' not in dn_cfg, \
'The three keyword args `num_classes`, `embed_dims`, and ' \
'`num_matching_queries` are set in `detector.__init__()`, ' \
'users should not set them in `dn_cfg` config.'
dn_cfg['num_classes'] = self.bbox_head.num_classes
dn_cfg['embed_dims'] = self.embed_dims
dn_cfg['num_matching_queries'] = self.num_queries
self.dn_query_generator = CdnQueryGenerator(**dn_cfg)
def _init_layers(self) -> None:
"""Initialize layers except for backbone, neck and bbox_head."""
self.positional_encoding = SinePositionalEncoding(
**self.positional_encoding)
self.encoder = DeformableDetrTransformerEncoder(**self.encoder)
self.decoder = DinoTransformerDecoder(**self.decoder)
self.embed_dims = self.encoder.embed_dims
self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims)
# NOTE In DINO, the query_embedding only contains content
# queries, while in Deformable DETR, the query_embedding
# contains both content and spatial queries, and in DETR,
# it only contains spatial queries.
num_feats = self.positional_encoding.num_feats
assert num_feats * 2 == self.embed_dims, \
f'embed_dims should be exactly 2 times of num_feats. ' \
f'Found {self.embed_dims} and {num_feats}.'
self.level_embed = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super(DeformableDETR, self).init_weights()
for coder in self.encoder, self.decoder:
for p in coder.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MultiScaleDeformableAttention):
m.init_weights()
nn.init.xavier_uniform_(self.memory_trans_fc.weight)
nn.init.xavier_uniform_(self.query_embedding.weight)
normal_(self.level_embed)
def forward_transformer(
self,
img_feats: Tuple[Tensor],
batch_data_samples: OptSampleList = None,
) -> Dict:
"""Forward process of Transformer.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
The difference is that the ground truth in `batch_data_samples` is
required for the `pre_decoder` to prepare the query of DINO.
Additionally, DINO inherits the `pre_transformer` method and the
`forward_encoder` method of DeformableDETR. More details about the
two methods can be found in `mmdet/detector/deformable_detr.py`.
Args:
img_feats (tuple[Tensor]): Tuple of feature maps from neck. Each
feature map has shape (bs, dim, H, W).
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Defaults to None.
Returns:
dict: The dictionary of bbox_head function inputs, which always
includes the `hidden_states` of the decoder output and may contain
`references` including the initial and intermediate references.
"""
encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer(
img_feats, batch_data_samples)
encoder_outputs_dict = self.forward_encoder(**encoder_inputs_dict)
tmp_dec_in, head_inputs_dict = self.pre_decoder(
**encoder_outputs_dict, batch_data_samples=batch_data_samples)
decoder_inputs_dict.update(tmp_dec_in)
decoder_outputs_dict = self.forward_decoder(**decoder_inputs_dict)
head_inputs_dict.update(decoder_outputs_dict)
return head_inputs_dict
def pre_decoder(
self,
memory: Tensor,
memory_mask: Tensor,
spatial_shapes: Tensor,
batch_data_samples: OptSampleList = None,
) -> Tuple[Dict]:
"""Prepare intermediate variables before entering Transformer decoder,
such as `query`, `query_pos`, and `reference_points`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points). Will only be used when
`as_two_stage` is `True`.
spatial_shapes (Tensor): Spatial shapes of features in all levels.
With shape (num_levels, 2), last dimension represents (h, w).
Will only be used when `as_two_stage` is `True`.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Defaults to None.
Returns:
tuple[dict]: The decoder_inputs_dict and head_inputs_dict.
- decoder_inputs_dict (dict): The keyword dictionary args of
`self.forward_decoder()`, which includes 'query', 'memory',
`reference_points`, and `dn_mask`. The reference points of
decoder input here are 4D boxes, although it has `points`
in its name.
- head_inputs_dict (dict): The keyword dictionary args of the
bbox_head functions, which includes `topk_score`, `topk_coords`,
and `dn_meta` when `self.training` is `True`, else is empty.
"""
bs, _, c = memory.shape
cls_out_features = self.bbox_head.cls_branches[
self.decoder.num_layers].out_features
output_memory, output_proposals = self.gen_encoder_output_proposals(
memory, memory_mask, spatial_shapes)
enc_outputs_class = self.bbox_head.cls_branches[
self.decoder.num_layers](
output_memory)
enc_outputs_coord_unact = self.bbox_head.reg_branches[
self.decoder.num_layers](output_memory) + output_proposals
# NOTE The DINO selects top-k proposals according to scores of
# multi-class classification, while DeformDETR, where the input
# is `enc_outputs_class[..., 0]` selects according to scores of
# binary classification.
topk_indices = torch.topk(
enc_outputs_class.max(-1)[0], k=self.num_queries, dim=1)[1]
topk_score = torch.gather(
enc_outputs_class, 1,
topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features))
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1,
topk_indices.unsqueeze(-1).repeat(1, 1, 4))
topk_coords = topk_coords_unact.sigmoid()
topk_coords_unact = topk_coords_unact.detach()
query = self.query_embedding.weight[:, None, :]
query = query.repeat(1, bs, 1).transpose(0, 1)
if self.training:
dn_label_query, dn_bbox_query, dn_mask, dn_meta = \
self.dn_query_generator(batch_data_samples)
query = torch.cat([dn_label_query, query], dim=1)
reference_points = torch.cat([dn_bbox_query, topk_coords_unact],
dim=1)
else:
reference_points = topk_coords_unact
dn_mask, dn_meta = None, None
reference_points = reference_points.sigmoid()
decoder_inputs_dict = dict(
query=query,
memory=memory,
reference_points=reference_points,
dn_mask=dn_mask)
# NOTE DINO calculates encoder losses on scores and coordinates
# of selected top-k encoder queries, while DeformDETR is of all
# encoder queries.
head_inputs_dict = dict(
enc_outputs_class=topk_score,
enc_outputs_coord=topk_coords,
dn_meta=dn_meta) if self.training else dict()
return decoder_inputs_dict, head_inputs_dict
def forward_decoder(self,
query: Tensor,
memory: Tensor,
memory_mask: Tensor,
reference_points: Tensor,
spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios: Tensor,
dn_mask: Optional[Tensor] = None) -> Dict:
"""Forward with Transformer decoder.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
query (Tensor): The queries of decoder inputs, has shape
(bs, num_queries_total, dim), where `num_queries_total` is the
sum of `num_denoising_queries` and `num_matching_queries` when
`self.training` is `True`, else `num_matching_queries`.
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
reference_points (Tensor): The initial reference, has shape
(bs, num_queries_total, 4) with the last dimension arranged as
(cx, cy, w, h).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
dn_mask (Tensor, optional): The attention mask to prevent
information leakage from different denoising groups and
matching parts, will be used as `self_attn_mask` of the
`self.decoder`, has shape (num_queries_total,
num_queries_total).
It is `None` when `self.training` is `False`.
Returns:
dict: The dictionary of decoder outputs, which includes the
`hidden_states` of the decoder output and `references` including
the initial and intermediate reference_points.
"""
inter_states, references = self.decoder(
query=query,
value=memory,
key_padding_mask=memory_mask,
self_attn_mask=dn_mask,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reg_branches=self.bbox_head.reg_branches)
if len(query) == self.num_queries:
# NOTE: This is to make sure label_embeding can be involved to
# produce loss even if there is no denoising query (no ground truth
# target in this GPU), otherwise, this will raise runtime error in
# distributed training.
inter_states[0] += \
self.dn_query_generator.label_embedding.weight[0, 0] * 0.0
decoder_outputs_dict = dict(
hidden_states=inter_states, references=list(references))
return decoder_outputs_dict