File size: 13,511 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Optional, Tuple

import torch
from torch import Tensor, nn
from torch.nn.init import normal_

from mmdet.registry import MODELS
from mmdet.structures import OptSampleList
from mmdet.utils import OptConfigType
from ..layers import (CdnQueryGenerator, DeformableDetrTransformerEncoder,
                      DinoTransformerDecoder, SinePositionalEncoding)
from .deformable_detr import DeformableDETR, MultiScaleDeformableAttention


@MODELS.register_module()
class DINO(DeformableDETR):
    r"""Implementation of `DINO: DETR with Improved DeNoising Anchor Boxes
    for End-to-End Object Detection <https://arxiv.org/abs/2203.03605>`_

    Code is modified from the `official github repo
    <https://github.com/IDEA-Research/DINO>`_.

    Args:
        dn_cfg (:obj:`ConfigDict` or dict, optional): Config of denoising
            query generator. Defaults to `None`.
    """

    def __init__(self, *args, dn_cfg: OptConfigType = None, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        assert self.as_two_stage, 'as_two_stage must be True for DINO'
        assert self.with_box_refine, 'with_box_refine must be True for DINO'

        if dn_cfg is not None:
            assert 'num_classes' not in dn_cfg and \
                   'num_queries' not in dn_cfg and \
                   'hidden_dim' not in dn_cfg, \
                'The three keyword args `num_classes`, `embed_dims`, and ' \
                '`num_matching_queries` are set in `detector.__init__()`, ' \
                'users should not set them in `dn_cfg` config.'
            dn_cfg['num_classes'] = self.bbox_head.num_classes
            dn_cfg['embed_dims'] = self.embed_dims
            dn_cfg['num_matching_queries'] = self.num_queries
        self.dn_query_generator = CdnQueryGenerator(**dn_cfg)

    def _init_layers(self) -> None:
        """Initialize layers except for backbone, neck and bbox_head."""
        self.positional_encoding = SinePositionalEncoding(
            **self.positional_encoding)
        self.encoder = DeformableDetrTransformerEncoder(**self.encoder)
        self.decoder = DinoTransformerDecoder(**self.decoder)
        self.embed_dims = self.encoder.embed_dims
        self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims)
        # NOTE In DINO, the query_embedding only contains content
        # queries, while in Deformable DETR, the query_embedding
        # contains both content and spatial queries, and in DETR,
        # it only contains spatial queries.

        num_feats = self.positional_encoding.num_feats
        assert num_feats * 2 == self.embed_dims, \
            f'embed_dims should be exactly 2 times of num_feats. ' \
            f'Found {self.embed_dims} and {num_feats}.'

        self.level_embed = nn.Parameter(
            torch.Tensor(self.num_feature_levels, self.embed_dims))
        self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
        self.memory_trans_norm = nn.LayerNorm(self.embed_dims)

    def init_weights(self) -> None:
        """Initialize weights for Transformer and other components."""
        super(DeformableDETR, self).init_weights()
        for coder in self.encoder, self.decoder:
            for p in coder.parameters():
                if p.dim() > 1:
                    nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MultiScaleDeformableAttention):
                m.init_weights()
        nn.init.xavier_uniform_(self.memory_trans_fc.weight)
        nn.init.xavier_uniform_(self.query_embedding.weight)
        normal_(self.level_embed)

    def forward_transformer(
        self,
        img_feats: Tuple[Tensor],
        batch_data_samples: OptSampleList = None,
    ) -> Dict:
        """Forward process of Transformer.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.
        The difference is that the ground truth in `batch_data_samples` is
        required for the `pre_decoder` to prepare the query of DINO.
        Additionally, DINO inherits the `pre_transformer` method and the
        `forward_encoder` method of DeformableDETR. More details about the
        two methods can be found in `mmdet/detector/deformable_detr.py`.

        Args:
            img_feats (tuple[Tensor]): Tuple of feature maps from neck. Each
                feature map has shape (bs, dim, H, W).
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
                Defaults to None.

        Returns:
            dict: The dictionary of bbox_head function inputs, which always
            includes the `hidden_states` of the decoder output and may contain
            `references` including the initial and intermediate references.
        """
        encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer(
            img_feats, batch_data_samples)

        encoder_outputs_dict = self.forward_encoder(**encoder_inputs_dict)

        tmp_dec_in, head_inputs_dict = self.pre_decoder(
            **encoder_outputs_dict, batch_data_samples=batch_data_samples)
        decoder_inputs_dict.update(tmp_dec_in)

        decoder_outputs_dict = self.forward_decoder(**decoder_inputs_dict)
        head_inputs_dict.update(decoder_outputs_dict)
        return head_inputs_dict

    def pre_decoder(
        self,
        memory: Tensor,
        memory_mask: Tensor,
        spatial_shapes: Tensor,
        batch_data_samples: OptSampleList = None,
    ) -> Tuple[Dict]:
        """Prepare intermediate variables before entering Transformer decoder,
        such as `query`, `query_pos`, and `reference_points`.

        Args:
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points). Will only be used when
                `as_two_stage` is `True`.
            spatial_shapes (Tensor): Spatial shapes of features in all levels.
                With shape (num_levels, 2), last dimension represents (h, w).
                Will only be used when `as_two_stage` is `True`.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
                Defaults to None.

        Returns:
            tuple[dict]: The decoder_inputs_dict and head_inputs_dict.

            - decoder_inputs_dict (dict): The keyword dictionary args of
              `self.forward_decoder()`, which includes 'query', 'memory',
              `reference_points`, and `dn_mask`. The reference points of
              decoder input here are 4D boxes, although it has `points`
              in its name.
            - head_inputs_dict (dict): The keyword dictionary args of the
              bbox_head functions, which includes `topk_score`, `topk_coords`,
              and `dn_meta` when `self.training` is `True`, else is empty.
        """
        bs, _, c = memory.shape
        cls_out_features = self.bbox_head.cls_branches[
            self.decoder.num_layers].out_features

        output_memory, output_proposals = self.gen_encoder_output_proposals(
            memory, memory_mask, spatial_shapes)
        enc_outputs_class = self.bbox_head.cls_branches[
            self.decoder.num_layers](
                output_memory)
        enc_outputs_coord_unact = self.bbox_head.reg_branches[
            self.decoder.num_layers](output_memory) + output_proposals

        # NOTE The DINO selects top-k proposals according to scores of
        # multi-class classification, while DeformDETR, where the input
        # is `enc_outputs_class[..., 0]` selects according to scores of
        # binary classification.
        topk_indices = torch.topk(
            enc_outputs_class.max(-1)[0], k=self.num_queries, dim=1)[1]
        topk_score = torch.gather(
            enc_outputs_class, 1,
            topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features))
        topk_coords_unact = torch.gather(
            enc_outputs_coord_unact, 1,
            topk_indices.unsqueeze(-1).repeat(1, 1, 4))
        topk_coords = topk_coords_unact.sigmoid()
        topk_coords_unact = topk_coords_unact.detach()

        query = self.query_embedding.weight[:, None, :]
        query = query.repeat(1, bs, 1).transpose(0, 1)
        if self.training:
            dn_label_query, dn_bbox_query, dn_mask, dn_meta = \
                self.dn_query_generator(batch_data_samples)
            query = torch.cat([dn_label_query, query], dim=1)
            reference_points = torch.cat([dn_bbox_query, topk_coords_unact],
                                         dim=1)
        else:
            reference_points = topk_coords_unact
            dn_mask, dn_meta = None, None
        reference_points = reference_points.sigmoid()

        decoder_inputs_dict = dict(
            query=query,
            memory=memory,
            reference_points=reference_points,
            dn_mask=dn_mask)
        # NOTE DINO calculates encoder losses on scores and coordinates
        # of selected top-k encoder queries, while DeformDETR is of all
        # encoder queries.
        head_inputs_dict = dict(
            enc_outputs_class=topk_score,
            enc_outputs_coord=topk_coords,
            dn_meta=dn_meta) if self.training else dict()
        return decoder_inputs_dict, head_inputs_dict

    def forward_decoder(self,
                        query: Tensor,
                        memory: Tensor,
                        memory_mask: Tensor,
                        reference_points: Tensor,
                        spatial_shapes: Tensor,
                        level_start_index: Tensor,
                        valid_ratios: Tensor,
                        dn_mask: Optional[Tensor] = None) -> Dict:
        """Forward with Transformer decoder.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            query (Tensor): The queries of decoder inputs, has shape
                (bs, num_queries_total, dim), where `num_queries_total` is the
                sum of `num_denoising_queries` and `num_matching_queries` when
                `self.training` is `True`, else `num_matching_queries`.
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points).
            reference_points (Tensor): The initial reference, has shape
                (bs, num_queries_total, 4) with the last dimension arranged as
                (cx, cy, w, h).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).
            dn_mask (Tensor, optional): The attention mask to prevent
                information leakage from different denoising groups and
                matching parts, will be used as `self_attn_mask` of the
                `self.decoder`, has shape (num_queries_total,
                num_queries_total).
                It is `None` when `self.training` is `False`.

        Returns:
            dict: The dictionary of decoder outputs, which includes the
            `hidden_states` of the decoder output and `references` including
            the initial and intermediate reference_points.
        """
        inter_states, references = self.decoder(
            query=query,
            value=memory,
            key_padding_mask=memory_mask,
            self_attn_mask=dn_mask,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=self.bbox_head.reg_branches)

        if len(query) == self.num_queries:
            # NOTE: This is to make sure label_embeding can be involved to
            # produce loss even if there is no denoising query (no ground truth
            # target in this GPU), otherwise, this will raise runtime error in
            # distributed training.
            inter_states[0] += \
                self.dn_query_generator.label_embedding.weight[0, 0] * 0.0

        decoder_outputs_dict = dict(
            hidden_states=inter_states, references=list(references))
        return decoder_outputs_dict