KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from mmdet.registry import MODELS
from mmdet.structures import OptSampleList
from ..layers import (DetrTransformerDecoder, DetrTransformerEncoder,
SinePositionalEncoding)
from .base_detr import DetectionTransformer
@MODELS.register_module()
class DETR(DetectionTransformer):
r"""Implementation of `DETR: End-to-End Object Detection with Transformers.
<https://arxiv.org/pdf/2005.12872>`_.
Code is modified from the `official github repo
<https://github.com/facebookresearch/detr>`_.
"""
def _init_layers(self) -> None:
"""Initialize layers except for backbone, neck and bbox_head."""
self.positional_encoding = SinePositionalEncoding(
**self.positional_encoding)
self.encoder = DetrTransformerEncoder(**self.encoder)
self.decoder = DetrTransformerDecoder(**self.decoder)
self.embed_dims = self.encoder.embed_dims
# NOTE The embed_dims is typically passed from the inside out.
# For example in DETR, The embed_dims is passed as
# self_attn -> the first encoder layer -> encoder -> detector.
self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims)
num_feats = self.positional_encoding.num_feats
assert num_feats * 2 == self.embed_dims, \
'embed_dims should be exactly 2 times of num_feats. ' \
f'Found {self.embed_dims} and {num_feats}.'
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super().init_weights()
for coder in self.encoder, self.decoder:
for p in coder.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def pre_transformer(
self,
img_feats: Tuple[Tensor],
batch_data_samples: OptSampleList = None) -> Tuple[Dict, Dict]:
"""Prepare the inputs of the Transformer.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
img_feats (Tuple[Tensor]): Tuple of features output from the neck,
has shape (bs, c, h, w).
batch_data_samples (List[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such as
`gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Defaults to None.
Returns:
tuple[dict, dict]: The first dict contains the inputs of encoder
and the second dict contains the inputs of decoder.
- encoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_encoder()`, which includes 'feat', 'feat_mask',
and 'feat_pos'.
- decoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_decoder()`, which includes 'memory_mask',
and 'memory_pos'.
"""
feat = img_feats[-1] # NOTE img_feats contains only one feature.
batch_size, feat_dim, _, _ = feat.shape
# construct binary masks which for the transformer.
assert batch_data_samples is not None
batch_input_shape = batch_data_samples[0].batch_input_shape
img_shape_list = [sample.img_shape for sample in batch_data_samples]
input_img_h, input_img_w = batch_input_shape
masks = feat.new_ones((batch_size, input_img_h, input_img_w))
for img_id in range(batch_size):
img_h, img_w = img_shape_list[img_id]
masks[img_id, :img_h, :img_w] = 0
# NOTE following the official DETR repo, non-zero values represent
# ignored positions, while zero values mean valid positions.
masks = F.interpolate(
masks.unsqueeze(1), size=feat.shape[-2:]).to(torch.bool).squeeze(1)
# [batch_size, embed_dim, h, w]
pos_embed = self.positional_encoding(masks)
# use `view` instead of `flatten` for dynamically exporting to ONNX
# [bs, c, h, w] -> [bs, h*w, c]
feat = feat.view(batch_size, feat_dim, -1).permute(0, 2, 1)
pos_embed = pos_embed.view(batch_size, feat_dim, -1).permute(0, 2, 1)
# [bs, h, w] -> [bs, h*w]
masks = masks.view(batch_size, -1)
# prepare transformer_inputs_dict
encoder_inputs_dict = dict(
feat=feat, feat_mask=masks, feat_pos=pos_embed)
decoder_inputs_dict = dict(memory_mask=masks, memory_pos=pos_embed)
return encoder_inputs_dict, decoder_inputs_dict
def forward_encoder(self, feat: Tensor, feat_mask: Tensor,
feat_pos: Tensor) -> Dict:
"""Forward with Transformer encoder.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
feat (Tensor): Sequential features, has shape (bs, num_feat_points,
dim).
feat_mask (Tensor): ByteTensor, the padding mask of the features,
has shape (bs, num_feat_points).
feat_pos (Tensor): The positional embeddings of the features, has
shape (bs, num_feat_points, dim).
Returns:
dict: The dictionary of encoder outputs, which includes the
`memory` of the encoder output.
"""
memory = self.encoder(
query=feat, query_pos=feat_pos,
key_padding_mask=feat_mask) # for self_attn
encoder_outputs_dict = dict(memory=memory)
return encoder_outputs_dict
def pre_decoder(self, memory: Tensor) -> Tuple[Dict, Dict]:
"""Prepare intermediate variables before entering Transformer decoder,
such as `query`, `query_pos`.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
Returns:
tuple[dict, dict]: The first dict contains the inputs of decoder
and the second dict contains the inputs of the bbox_head function.
- decoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_decoder()`, which includes 'query', 'query_pos',
'memory'.
- head_inputs_dict (dict): The keyword args dictionary of the
bbox_head functions, which is usually empty, or includes
`enc_outputs_class` and `enc_outputs_class` when the detector
support 'two stage' or 'query selection' strategies.
"""
batch_size = memory.size(0) # (bs, num_feat_points, dim)
query_pos = self.query_embedding.weight
# (num_queries, dim) -> (bs, num_queries, dim)
query_pos = query_pos.unsqueeze(0).repeat(batch_size, 1, 1)
query = torch.zeros_like(query_pos)
decoder_inputs_dict = dict(
query_pos=query_pos, query=query, memory=memory)
head_inputs_dict = dict()
return decoder_inputs_dict, head_inputs_dict
def forward_decoder(self, query: Tensor, query_pos: Tensor, memory: Tensor,
memory_mask: Tensor, memory_pos: Tensor) -> Dict:
"""Forward with Transformer decoder.
The forward procedure of the transformer is defined as:
'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
More details can be found at `TransformerDetector.forward_transformer`
in `mmdet/detector/base_detr.py`.
Args:
query (Tensor): The queries of decoder inputs, has shape
(bs, num_queries, dim).
query_pos (Tensor): The positional queries of decoder inputs,
has shape (bs, num_queries, dim).
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
memory_pos (Tensor): The positional embeddings of memory, has
shape (bs, num_feat_points, dim).
Returns:
dict: The dictionary of decoder outputs, which includes the
`hidden_states` of the decoder output.
- hidden_states (Tensor): Has shape
(num_decoder_layers, bs, num_queries, dim)
"""
hidden_states = self.decoder(
query=query,
key=memory,
value=memory,
query_pos=query_pos,
key_pos=memory_pos,
key_padding_mask=memory_mask) # for cross_attn
head_inputs_dict = dict(hidden_states=hidden_states)
return head_inputs_dict