File size: 9,383 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Tuple

import torch
import torch.nn.functional as F
from torch import Tensor, nn

from mmdet.registry import MODELS
from mmdet.structures import OptSampleList
from ..layers import (DetrTransformerDecoder, DetrTransformerEncoder,
                      SinePositionalEncoding)
from .base_detr import DetectionTransformer


@MODELS.register_module()
class DETR(DetectionTransformer):
    r"""Implementation of `DETR: End-to-End Object Detection with Transformers.

    <https://arxiv.org/pdf/2005.12872>`_.

    Code is modified from the `official github repo
    <https://github.com/facebookresearch/detr>`_.
    """

    def _init_layers(self) -> None:
        """Initialize layers except for backbone, neck and bbox_head."""
        self.positional_encoding = SinePositionalEncoding(
            **self.positional_encoding)
        self.encoder = DetrTransformerEncoder(**self.encoder)
        self.decoder = DetrTransformerDecoder(**self.decoder)
        self.embed_dims = self.encoder.embed_dims
        # NOTE The embed_dims is typically passed from the inside out.
        # For example in DETR, The embed_dims is passed as
        # self_attn -> the first encoder layer -> encoder -> detector.
        self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims)

        num_feats = self.positional_encoding.num_feats
        assert num_feats * 2 == self.embed_dims, \
            'embed_dims should be exactly 2 times of num_feats. ' \
            f'Found {self.embed_dims} and {num_feats}.'

    def init_weights(self) -> None:
        """Initialize weights for Transformer and other components."""
        super().init_weights()
        for coder in self.encoder, self.decoder:
            for p in coder.parameters():
                if p.dim() > 1:
                    nn.init.xavier_uniform_(p)

    def pre_transformer(
            self,
            img_feats: Tuple[Tensor],
            batch_data_samples: OptSampleList = None) -> Tuple[Dict, Dict]:
        """Prepare the inputs of the Transformer.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            img_feats (Tuple[Tensor]): Tuple of features output from the neck,
                has shape (bs, c, h, w).
            batch_data_samples (List[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such as
                `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
                Defaults to None.

        Returns:
            tuple[dict, dict]: The first dict contains the inputs of encoder
            and the second dict contains the inputs of decoder.

            - encoder_inputs_dict (dict): The keyword args dictionary of
              `self.forward_encoder()`, which includes 'feat', 'feat_mask',
              and 'feat_pos'.
            - decoder_inputs_dict (dict): The keyword args dictionary of
              `self.forward_decoder()`, which includes 'memory_mask',
              and 'memory_pos'.
        """

        feat = img_feats[-1]  # NOTE img_feats contains only one feature.
        batch_size, feat_dim, _, _ = feat.shape
        # construct binary masks which for the transformer.
        assert batch_data_samples is not None
        batch_input_shape = batch_data_samples[0].batch_input_shape
        img_shape_list = [sample.img_shape for sample in batch_data_samples]

        input_img_h, input_img_w = batch_input_shape
        masks = feat.new_ones((batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w = img_shape_list[img_id]
            masks[img_id, :img_h, :img_w] = 0
        # NOTE following the official DETR repo, non-zero values represent
        # ignored positions, while zero values mean valid positions.

        masks = F.interpolate(
            masks.unsqueeze(1), size=feat.shape[-2:]).to(torch.bool).squeeze(1)
        # [batch_size, embed_dim, h, w]
        pos_embed = self.positional_encoding(masks)

        # use `view` instead of `flatten` for dynamically exporting to ONNX
        # [bs, c, h, w] -> [bs, h*w, c]
        feat = feat.view(batch_size, feat_dim, -1).permute(0, 2, 1)
        pos_embed = pos_embed.view(batch_size, feat_dim, -1).permute(0, 2, 1)
        # [bs, h, w] -> [bs, h*w]
        masks = masks.view(batch_size, -1)

        # prepare transformer_inputs_dict
        encoder_inputs_dict = dict(
            feat=feat, feat_mask=masks, feat_pos=pos_embed)
        decoder_inputs_dict = dict(memory_mask=masks, memory_pos=pos_embed)
        return encoder_inputs_dict, decoder_inputs_dict

    def forward_encoder(self, feat: Tensor, feat_mask: Tensor,
                        feat_pos: Tensor) -> Dict:
        """Forward with Transformer encoder.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            feat (Tensor): Sequential features, has shape (bs, num_feat_points,
                dim).
            feat_mask (Tensor): ByteTensor, the padding mask of the features,
                has shape (bs, num_feat_points).
            feat_pos (Tensor): The positional embeddings of the features, has
                shape (bs, num_feat_points, dim).

        Returns:
            dict: The dictionary of encoder outputs, which includes the
            `memory` of the encoder output.
        """
        memory = self.encoder(
            query=feat, query_pos=feat_pos,
            key_padding_mask=feat_mask)  # for self_attn
        encoder_outputs_dict = dict(memory=memory)
        return encoder_outputs_dict

    def pre_decoder(self, memory: Tensor) -> Tuple[Dict, Dict]:
        """Prepare intermediate variables before entering Transformer decoder,
        such as `query`, `query_pos`.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).

        Returns:
            tuple[dict, dict]: The first dict contains the inputs of decoder
            and the second dict contains the inputs of the bbox_head function.

            - decoder_inputs_dict (dict): The keyword args dictionary of
              `self.forward_decoder()`, which includes 'query', 'query_pos',
              'memory'.
            - head_inputs_dict (dict): The keyword args dictionary of the
              bbox_head functions, which is usually empty, or includes
              `enc_outputs_class` and `enc_outputs_class` when the detector
              support 'two stage' or 'query selection' strategies.
        """

        batch_size = memory.size(0)  # (bs, num_feat_points, dim)
        query_pos = self.query_embedding.weight
        # (num_queries, dim) -> (bs, num_queries, dim)
        query_pos = query_pos.unsqueeze(0).repeat(batch_size, 1, 1)
        query = torch.zeros_like(query_pos)

        decoder_inputs_dict = dict(
            query_pos=query_pos, query=query, memory=memory)
        head_inputs_dict = dict()
        return decoder_inputs_dict, head_inputs_dict

    def forward_decoder(self, query: Tensor, query_pos: Tensor, memory: Tensor,
                        memory_mask: Tensor, memory_pos: Tensor) -> Dict:
        """Forward with Transformer decoder.

        The forward procedure of the transformer is defined as:
        'pre_transformer' -> 'encoder' -> 'pre_decoder' -> 'decoder'
        More details can be found at `TransformerDetector.forward_transformer`
        in `mmdet/detector/base_detr.py`.

        Args:
            query (Tensor): The queries of decoder inputs, has shape
                (bs, num_queries, dim).
            query_pos (Tensor): The positional queries of decoder inputs,
                has shape (bs, num_queries, dim).
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points).
            memory_pos (Tensor): The positional embeddings of memory, has
                shape (bs, num_feat_points, dim).

        Returns:
            dict: The dictionary of decoder outputs, which includes the
            `hidden_states` of the decoder output.

            - hidden_states (Tensor): Has shape
              (num_decoder_layers, bs, num_queries, dim)
        """

        hidden_states = self.decoder(
            query=query,
            key=memory,
            value=memory,
            query_pos=query_pos,
            key_pos=memory_pos,
            key_padding_mask=memory_mask)  # for cross_attn

        head_inputs_dict = dict(hidden_states=hidden_states)
        return head_inputs_dict