Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional | |
import torch | |
import torch.nn as nn | |
from mmcls.registry import MODELS | |
from mmcls.structures import ClsDataSample | |
from .base import BaseClassifier | |
class ImageClassifier(BaseClassifier): | |
"""Image classifiers for supervised classification task. | |
Args: | |
backbone (dict): The backbone module. See | |
:mod:`mmcls.models.backbones`. | |
neck (dict, optional): The neck module to process features from | |
backbone. See :mod:`mmcls.models.necks`. Defaults to None. | |
head (dict, optional): The head module to do prediction and calculate | |
loss from processed features. See :mod:`mmcls.models.heads`. | |
Notice that if the head is not set, almost all methods cannot be | |
used except :meth:`extract_feat`. Defaults to None. | |
pretrained (str, optional): The pretrained checkpoint path, support | |
local path and remote path. Defaults to None. | |
train_cfg (dict, optional): The training setting. The acceptable | |
fields are: | |
- augments (List[dict]): The batch augmentation methods to use. | |
More details can be found in :mod:`mmcls.model.utils.augment`. | |
Defaults to None. | |
data_preprocessor (dict, optional): The config for preprocessing input | |
data. If None or no specified type, it will use | |
"ClsDataPreprocessor" as type. See :class:`ClsDataPreprocessor` for | |
more details. Defaults to None. | |
init_cfg (dict, optional): the config to control the initialization. | |
Defaults to None. | |
""" | |
def __init__(self, | |
backbone: dict, | |
neck: Optional[dict] = None, | |
head: Optional[dict] = None, | |
pretrained: Optional[str] = None, | |
train_cfg: Optional[dict] = None, | |
data_preprocessor: Optional[dict] = None, | |
init_cfg: Optional[dict] = None): | |
if pretrained is not None: | |
init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
if data_preprocessor is None: | |
data_preprocessor = {} | |
# The build process is in MMEngine, so we need to add scope here. | |
data_preprocessor.setdefault('type', 'mmcls.ClsDataPreprocessor') | |
if train_cfg is not None and 'augments' in train_cfg: | |
# Set batch augmentations by `train_cfg` | |
data_preprocessor['batch_augments'] = train_cfg | |
super(ImageClassifier, self).__init__( | |
init_cfg=init_cfg, data_preprocessor=data_preprocessor) | |
if not isinstance(backbone, nn.Module): | |
backbone = MODELS.build(backbone) | |
if neck is not None and not isinstance(neck, nn.Module): | |
neck = MODELS.build(neck) | |
if head is not None and not isinstance(head, nn.Module): | |
head = MODELS.build(head) | |
self.backbone = backbone | |
self.neck = neck | |
self.head = head | |
def forward(self, | |
inputs: torch.Tensor, | |
data_samples: Optional[List[ClsDataSample]] = None, | |
mode: str = 'tensor'): | |
"""The unified entry for a forward process in both training and test. | |
The method should accept three modes: "tensor", "predict" and "loss": | |
- "tensor": Forward the whole network and return tensor or tuple of | |
tensor without any post-processing, same as a common nn.Module. | |
- "predict": Forward and return the predictions, which are fully | |
processed to a list of :obj:`ClsDataSample`. | |
- "loss": Forward and return a dict of losses according to the given | |
inputs and data samples. | |
Note that this method doesn't handle neither back propagation nor | |
optimizer updating, which are done in the :meth:`train_step`. | |
Args: | |
inputs (torch.Tensor): The input tensor with shape | |
(N, C, ...) in general. | |
data_samples (List[ClsDataSample], optional): The annotation | |
data of every samples. It's required if ``mode="loss"``. | |
Defaults to None. | |
mode (str): Return what kind of value. Defaults to 'tensor'. | |
Returns: | |
The return type depends on ``mode``. | |
- If ``mode="tensor"``, return a tensor or a tuple of tensor. | |
- If ``mode="predict"``, return a list of | |
:obj:`mmcls.structures.ClsDataSample`. | |
- If ``mode="loss"``, return a dict of tensor. | |
""" | |
if mode == 'tensor': | |
feats = self.extract_feat(inputs) | |
return self.head(feats) if self.with_head else feats | |
elif mode == 'loss': | |
return self.loss(inputs, data_samples) | |
elif mode == 'predict': | |
return self.predict(inputs, data_samples) | |
else: | |
raise RuntimeError(f'Invalid mode "{mode}".') | |
def extract_feat(self, inputs, stage='neck'): | |
"""Extract features from the input tensor with shape (N, C, ...). | |
Args: | |
inputs (Tensor): A batch of inputs. The shape of it should be | |
``(num_samples, num_channels, *img_shape)``. | |
stage (str): Which stage to output the feature. Choose from: | |
- "backbone": The output of backbone network. Returns a tuple | |
including multiple stages features. | |
- "neck": The output of neck module. Returns a tuple including | |
multiple stages features. | |
- "pre_logits": The feature before the final classification | |
linear layer. Usually returns a tensor. | |
Defaults to "neck". | |
Returns: | |
tuple | Tensor: The output of specified stage. | |
The output depends on detailed implementation. In general, the | |
output of backbone and neck is a tuple and the output of | |
pre_logits is a tensor. | |
Examples: | |
1. Backbone output | |
>>> import torch | |
>>> from mmengine import Config | |
>>> from mmcls.models import build_classifier | |
>>> | |
>>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model | |
>>> cfg.backbone.out_indices = (0, 1, 2, 3) # Output multi-scale feature maps | |
>>> model = build_classifier(cfg) | |
>>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='backbone') | |
>>> for out in outs: | |
... print(out.shape) | |
torch.Size([1, 64, 56, 56]) | |
torch.Size([1, 128, 28, 28]) | |
torch.Size([1, 256, 14, 14]) | |
torch.Size([1, 512, 7, 7]) | |
2. Neck output | |
>>> import torch | |
>>> from mmengine import Config | |
>>> from mmcls.models import build_classifier | |
>>> | |
>>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model | |
>>> cfg.backbone.out_indices = (0, 1, 2, 3) # Output multi-scale feature maps | |
>>> model = build_classifier(cfg) | |
>>> | |
>>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='neck') | |
>>> for out in outs: | |
... print(out.shape) | |
torch.Size([1, 64]) | |
torch.Size([1, 128]) | |
torch.Size([1, 256]) | |
torch.Size([1, 512]) | |
3. Pre-logits output (without the final linear classifier head) | |
>>> import torch | |
>>> from mmengine import Config | |
>>> from mmcls.models import build_classifier | |
>>> | |
>>> cfg = Config.fromfile('configs/vision_transformer/vit-base-p16_pt-64xb64_in1k-224.py').model | |
>>> model = build_classifier(cfg) | |
>>> | |
>>> out = model.extract_feat(torch.rand(1, 3, 224, 224), stage='pre_logits') | |
>>> print(out.shape) # The hidden dims in head is 3072 | |
torch.Size([1, 3072]) | |
""" # noqa: E501 | |
assert stage in ['backbone', 'neck', 'pre_logits'], \ | |
(f'Invalid output stage "{stage}", please choose from "backbone", ' | |
'"neck" and "pre_logits"') | |
x = self.backbone(inputs) | |
if stage == 'backbone': | |
return x | |
if self.with_neck: | |
x = self.neck(x) | |
if stage == 'neck': | |
return x | |
assert self.with_head and hasattr(self.head, 'pre_logits'), \ | |
"No head or the head doesn't implement `pre_logits` method." | |
return self.head.pre_logits(x) | |
def loss(self, inputs: torch.Tensor, | |
data_samples: List[ClsDataSample]) -> dict: | |
"""Calculate losses from a batch of inputs and data samples. | |
Args: | |
inputs (torch.Tensor): The input tensor with shape | |
(N, C, ...) in general. | |
data_samples (List[ClsDataSample]): The annotation data of | |
every samples. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
feats = self.extract_feat(inputs) | |
return self.head.loss(feats, data_samples) | |
def predict(self, | |
inputs: torch.Tensor, | |
data_samples: Optional[List[ClsDataSample]] = None, | |
**kwargs) -> List[ClsDataSample]: | |
"""Predict results from a batch of inputs. | |
Args: | |
inputs (torch.Tensor): The input tensor with shape | |
(N, C, ...) in general. | |
data_samples (List[ClsDataSample], optional): The annotation | |
data of every samples. Defaults to None. | |
**kwargs: Other keyword arguments accepted by the ``predict`` | |
method of :attr:`head`. | |
""" | |
feats = self.extract_feat(inputs) | |
return self.head.predict(feats, data_samples, **kwargs) | |