File size: 9,912 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional

import torch
import torch.nn as nn

from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .base import BaseClassifier


@MODELS.register_module()
class ImageClassifier(BaseClassifier):
    """Image classifiers for supervised classification task.

    Args:
        backbone (dict): The backbone module. See
            :mod:`mmcls.models.backbones`.
        neck (dict, optional): The neck module to process features from
            backbone. See :mod:`mmcls.models.necks`. Defaults to None.
        head (dict, optional): The head module to do prediction and calculate
            loss from processed features. See :mod:`mmcls.models.heads`.
            Notice that if the head is not set, almost all methods cannot be
            used except :meth:`extract_feat`. Defaults to None.
        pretrained (str, optional): The pretrained checkpoint path, support
            local path and remote path. Defaults to None.
        train_cfg (dict, optional): The training setting. The acceptable
            fields are:

            - augments (List[dict]): The batch augmentation methods to use.
              More details can be found in :mod:`mmcls.model.utils.augment`.

            Defaults to None.
        data_preprocessor (dict, optional): The config for preprocessing input
            data. If None or no specified type, it will use
            "ClsDataPreprocessor" as type. See :class:`ClsDataPreprocessor` for
            more details. Defaults to None.
        init_cfg (dict, optional): the config to control the initialization.
            Defaults to None.
    """

    def __init__(self,
                 backbone: dict,
                 neck: Optional[dict] = None,
                 head: Optional[dict] = None,
                 pretrained: Optional[str] = None,
                 train_cfg: Optional[dict] = None,
                 data_preprocessor: Optional[dict] = None,
                 init_cfg: Optional[dict] = None):
        if pretrained is not None:
            init_cfg = dict(type='Pretrained', checkpoint=pretrained)

        if data_preprocessor is None:
            data_preprocessor = {}
        # The build process is in MMEngine, so we need to add scope here.
        data_preprocessor.setdefault('type', 'mmcls.ClsDataPreprocessor')

        if train_cfg is not None and 'augments' in train_cfg:
            # Set batch augmentations by `train_cfg`
            data_preprocessor['batch_augments'] = train_cfg

        super(ImageClassifier, self).__init__(
            init_cfg=init_cfg, data_preprocessor=data_preprocessor)

        if not isinstance(backbone, nn.Module):
            backbone = MODELS.build(backbone)
        if neck is not None and not isinstance(neck, nn.Module):
            neck = MODELS.build(neck)
        if head is not None and not isinstance(head, nn.Module):
            head = MODELS.build(head)

        self.backbone = backbone
        self.neck = neck
        self.head = head

    def forward(self,
                inputs: torch.Tensor,
                data_samples: Optional[List[ClsDataSample]] = None,
                mode: str = 'tensor'):
        """The unified entry for a forward process in both training and test.

        The method should accept three modes: "tensor", "predict" and "loss":

        - "tensor": Forward the whole network and return tensor or tuple of
          tensor without any post-processing, same as a common nn.Module.
        - "predict": Forward and return the predictions, which are fully
          processed to a list of :obj:`ClsDataSample`.
        - "loss": Forward and return a dict of losses according to the given
          inputs and data samples.

        Note that this method doesn't handle neither back propagation nor
        optimizer updating, which are done in the :meth:`train_step`.

        Args:
            inputs (torch.Tensor): The input tensor with shape
                (N, C, ...) in general.
            data_samples (List[ClsDataSample], optional): The annotation
                data of every samples. It's required if ``mode="loss"``.
                Defaults to None.
            mode (str): Return what kind of value. Defaults to 'tensor'.

        Returns:
            The return type depends on ``mode``.

            - If ``mode="tensor"``, return a tensor or a tuple of tensor.
            - If ``mode="predict"``, return a list of
              :obj:`mmcls.structures.ClsDataSample`.
            - If ``mode="loss"``, return a dict of tensor.
        """
        if mode == 'tensor':
            feats = self.extract_feat(inputs)
            return self.head(feats) if self.with_head else feats
        elif mode == 'loss':
            return self.loss(inputs, data_samples)
        elif mode == 'predict':
            return self.predict(inputs, data_samples)
        else:
            raise RuntimeError(f'Invalid mode "{mode}".')

    def extract_feat(self, inputs, stage='neck'):
        """Extract features from the input tensor with shape (N, C, ...).

        Args:
            inputs (Tensor): A batch of inputs. The shape of it should be
                ``(num_samples, num_channels, *img_shape)``.
            stage (str): Which stage to output the feature. Choose from:

                - "backbone": The output of backbone network. Returns a tuple
                  including multiple stages features.
                - "neck": The output of neck module. Returns a tuple including
                  multiple stages features.
                - "pre_logits": The feature before the final classification
                  linear layer. Usually returns a tensor.

                Defaults to "neck".

        Returns:
            tuple | Tensor: The output of specified stage.
            The output depends on detailed implementation. In general, the
            output of backbone and neck is a tuple and the output of
            pre_logits is a tensor.

        Examples:
            1. Backbone output

            >>> import torch
            >>> from mmengine import Config
            >>> from mmcls.models import build_classifier
            >>>
            >>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model
            >>> cfg.backbone.out_indices = (0, 1, 2, 3)  # Output multi-scale feature maps
            >>> model = build_classifier(cfg)
            >>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='backbone')
            >>> for out in outs:
            ...     print(out.shape)
            torch.Size([1, 64, 56, 56])
            torch.Size([1, 128, 28, 28])
            torch.Size([1, 256, 14, 14])
            torch.Size([1, 512, 7, 7])

            2. Neck output

            >>> import torch
            >>> from mmengine import Config
            >>> from mmcls.models import build_classifier
            >>>
            >>> cfg = Config.fromfile('configs/resnet/resnet18_8xb32_in1k.py').model
            >>> cfg.backbone.out_indices = (0, 1, 2, 3)  # Output multi-scale feature maps
            >>> model = build_classifier(cfg)
            >>>
            >>> outs = model.extract_feat(torch.rand(1, 3, 224, 224), stage='neck')
            >>> for out in outs:
            ...     print(out.shape)
            torch.Size([1, 64])
            torch.Size([1, 128])
            torch.Size([1, 256])
            torch.Size([1, 512])

            3. Pre-logits output (without the final linear classifier head)

            >>> import torch
            >>> from mmengine import Config
            >>> from mmcls.models import build_classifier
            >>>
            >>> cfg = Config.fromfile('configs/vision_transformer/vit-base-p16_pt-64xb64_in1k-224.py').model
            >>> model = build_classifier(cfg)
            >>>
            >>> out = model.extract_feat(torch.rand(1, 3, 224, 224), stage='pre_logits')
            >>> print(out.shape)  # The hidden dims in head is 3072
            torch.Size([1, 3072])
        """  # noqa: E501
        assert stage in ['backbone', 'neck', 'pre_logits'], \
            (f'Invalid output stage "{stage}", please choose from "backbone", '
             '"neck" and "pre_logits"')

        x = self.backbone(inputs)

        if stage == 'backbone':
            return x

        if self.with_neck:
            x = self.neck(x)
        if stage == 'neck':
            return x

        assert self.with_head and hasattr(self.head, 'pre_logits'), \
            "No head or the head doesn't implement `pre_logits` method."
        return self.head.pre_logits(x)

    def loss(self, inputs: torch.Tensor,
             data_samples: List[ClsDataSample]) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            inputs (torch.Tensor): The input tensor with shape
                (N, C, ...) in general.
            data_samples (List[ClsDataSample]): The annotation data of
                every samples.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        feats = self.extract_feat(inputs)
        return self.head.loss(feats, data_samples)

    def predict(self,
                inputs: torch.Tensor,
                data_samples: Optional[List[ClsDataSample]] = None,
                **kwargs) -> List[ClsDataSample]:
        """Predict results from a batch of inputs.

        Args:
            inputs (torch.Tensor): The input tensor with shape
                (N, C, ...) in general.
            data_samples (List[ClsDataSample], optional): The annotation
                data of every samples. Defaults to None.
            **kwargs: Other keyword arguments accepted by the ``predict``
                method of :attr:`head`.
        """
        feats = self.extract_feat(inputs)
        return self.head.predict(feats, data_samples, **kwargs)