Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Union | |
import torch | |
from mmcv.cnn import build_norm_layer | |
from mmcv.cnn.bricks.drop import DropPath | |
from mmcv.cnn.bricks.transformer import PatchEmbed, PatchMerging | |
from mmengine.model import BaseModule | |
from torch import nn | |
from torch.utils.checkpoint import checkpoint | |
from mmcls.models.backbones.base_backbone import BaseBackbone | |
from mmcls.models.backbones.vision_transformer import TransformerEncoderLayer | |
from mmcls.models.utils.attention import WindowMSA | |
from mmcls.models.utils.helpers import to_2tuple | |
from mmcls.registry import MODELS | |
class MixMIMWindowAttention(WindowMSA): | |
"""MixMIM Window Attention. | |
Compared with WindowMSA, we add some modifications | |
in ``forward`` to meet the requirement of MixMIM during | |
pretraining. | |
Implements one windown attention in MixMIM. | |
Args: | |
embed_dims (int): The feature dimension. | |
window_size (list): The height and width of the window. | |
num_heads (int): The number of head in attention. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
qk_scale (float, optional): Override default qk scale of | |
``head_dim ** -0.5`` if set. Defaults to None. | |
attn_drop_rate (float): attention drop rate. | |
Defaults to 0. | |
proj_drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims, | |
window_size, | |
num_heads, | |
qkv_bias=True, | |
qk_scale=None, | |
attn_drop_rate=0., | |
proj_drop_rate=0., | |
init_cfg=None): | |
super().__init__( | |
embed_dims=embed_dims, | |
window_size=window_size, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop_rate, | |
proj_drop=proj_drop_rate, | |
init_cfg=init_cfg) | |
def forward(self, x, mask=None): | |
B_, N, C = x.shape | |
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, | |
C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[ | |
2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
relative_position_bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1], | |
self.window_size[0] * self.window_size[1], | |
-1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute( | |
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
mask = mask.reshape(B_, 1, 1, N) | |
mask_new = mask * mask.transpose( | |
2, 3) + (1 - mask) * (1 - mask).transpose(2, 3) | |
mask_new = 1 - mask_new | |
if mask_new.dtype == torch.float16: | |
attn = attn - 65500 * mask_new | |
else: | |
attn = attn - 1e30 * mask_new | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MixMIMBlock(TransformerEncoderLayer): | |
"""MixMIM Block. Implements one block in MixMIM. | |
Args: | |
embed_dims (int): The feature dimension. | |
input_resolution (tuple): Input resolution of this layer. | |
num_heads (int): The number of head in attention, | |
window_size (list): The height and width of the window. | |
mlp_ratio (int): The MLP ration in FFN. | |
num_fcs (int): The number of linear layers in a block. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
proj_drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
attn_drop_rate (float): attention drop rate. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. | |
Defaults to 0. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims, | |
input_resolution, | |
num_heads, | |
window_size=7, | |
mlp_ratio=4., | |
num_fcs=2, | |
qkv_bias=True, | |
proj_drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
feedforward_channels=int(mlp_ratio * embed_dims), | |
drop_rate=proj_drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
num_fcs=num_fcs, | |
qkv_bias=qkv_bias, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.mlp_ratio = mlp_ratio | |
if min(self.input_resolution) <= self.window_size: | |
self.window_size = min(self.input_resolution) | |
self.attn = MixMIMWindowAttention( | |
embed_dims=embed_dims, | |
window_size=to_2tuple(self.window_size), | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop_rate=attn_drop_rate, | |
proj_drop_rate=proj_drop_rate) | |
self.drop_path = DropPath( | |
drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
def window_reverse(windows, H, W, window_size): | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view(B, H // window_size, W // window_size, window_size, | |
window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
def window_partition(x, window_size): | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, | |
window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous() | |
windows = windows.view(-1, window_size, window_size, C) | |
return windows | |
def forward(self, x, attn_mask=None): | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# partition windows | |
x_windows = self.window_partition( | |
x, self.window_size) # nW*B, window_size, window_size, C | |
x_windows = x_windows.view(-1, self.window_size * self.window_size, | |
C) # nW*B, window_size*window_size, C | |
if attn_mask is not None: | |
attn_mask = attn_mask.repeat(B, 1, 1) # B, N, 1 | |
attn_mask = attn_mask.view(B, H, W, 1) | |
attn_mask = self.window_partition(attn_mask, self.window_size) | |
attn_mask = attn_mask.view(-1, self.window_size * self.window_size, | |
1) | |
# W-MSA/SW-MSA | |
attn_windows = self.attn( | |
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, | |
self.window_size, C) | |
x = self.window_reverse(attn_windows, H, W, | |
self.window_size) # B H' W' C | |
x = x.view(B, H * W, C) | |
x = shortcut + self.drop_path(x) | |
x = self.ffn(self.norm2(x), identity=x) # ffn contains DropPath | |
return x | |
class MixMIMLayer(BaseModule): | |
"""Implements one MixMIM layer, which may contains several MixMIM blocks. | |
Args: | |
embed_dims (int): The feature dimension. | |
input_resolution (tuple): Input resolution of this layer. | |
depth (int): The number of blocks in this layer. | |
num_heads (int): The number of head in attention, | |
window_size (list): The height and width of the window. | |
mlp_ratio (int): The MLP ration in FFN. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
proj_drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
attn_drop_rate (float): attention drop rate. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. | |
Defaults to 0. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
downsample (class, optional): Downsample the output of blocks b | |
y patch merging.Defaults to None. | |
use_checkpoint (bool): Whether use the checkpoint to | |
reduce GPU memory cost. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims: int, | |
input_resolution: int, | |
depth: int, | |
num_heads: int, | |
window_size: int, | |
mlp_ratio=4., | |
qkv_bias=True, | |
proj_drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=[0.], | |
norm_cfg=dict(type='LN'), | |
downsample=None, | |
use_checkpoint=False, | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
self.blocks.append( | |
MixMIMBlock( | |
embed_dims=embed_dims, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
window_size=window_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
proj_drop_rate=proj_drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate[i], | |
norm_cfg=norm_cfg)) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
in_channels=embed_dims, | |
out_channels=2 * embed_dims, | |
norm_cfg=norm_cfg) | |
else: | |
self.downsample = None | |
def forward(self, x, attn_mask=None): | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint(blk, x, attn_mask) | |
else: | |
x = blk(x, attn_mask=attn_mask) | |
if self.downsample is not None: | |
x, _ = self.downsample(x, self.input_resolution) | |
return x | |
def extra_repr(self) -> str: | |
return f'dim={self.embed_dims}, \ | |
input_resolution={self.input_resolution}, depth={self.depth}' | |
class MixMIMTransformer(BaseBackbone): | |
"""MixMIM backbone. | |
A PyTorch implement of : ` MixMIM: Mixed and Masked Image | |
Modeling for Efficient Visual Representation Learning | |
<https://arxiv.org/abs/2205.13137>`_ | |
Args: | |
arch (str | dict): MixMIM architecture. If use string, | |
choose from 'base','large' and 'huge'. | |
If use dict, it should have below keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **depths** (int): The number of transformer encoder layers. | |
- **num_heads** (int): The number of heads in attention modules. | |
Defaults to 'base'. | |
mlp_ratio (int): The mlp ratio in FFN. Defaults to 4. | |
img_size (int | tuple): The expected input image shape. Because we | |
support dynamic input shape, just set the argument to mlp_ratio | |
the most common input image shape. Defaults to 224. | |
patch_size (int | tuple): The patch size in patch embedding. | |
Defaults to 16. | |
in_channels (int): The num of input channels. Defaults to 3. | |
window_size (list): The height and width of the window. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
patch_cfg (dict): Extra config dict for patch embedding. | |
Defaults to an empty dict. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
attn_drop_rate (float): attention drop rate. Defaults to 0. | |
use_checkpoint (bool): Whether use the checkpoint to | |
reduce GPU memory cost. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
arch_zoo = { | |
**dict.fromkeys( | |
['b', 'base'], { | |
'embed_dims': 128, | |
'depths': [2, 2, 18, 2], | |
'num_heads': [4, 8, 16, 32] | |
}), | |
**dict.fromkeys( | |
['l', 'large'], { | |
'embed_dims': 192, | |
'depths': [2, 2, 18, 2], | |
'num_heads': [6, 12, 24, 48] | |
}), | |
**dict.fromkeys( | |
['h', 'huge'], { | |
'embed_dims': 352, | |
'depths': [2, 2, 18, 2], | |
'num_heads': [11, 22, 44, 88] | |
}), | |
} | |
def __init__( | |
self, | |
arch='base', | |
mlp_ratio=4, | |
img_size=224, | |
patch_size=4, | |
in_channels=3, | |
window_size=[14, 14, 14, 7], | |
qkv_bias=True, | |
patch_cfg=dict(), | |
norm_cfg=dict(type='LN'), | |
drop_rate=0.0, | |
drop_path_rate=0.0, | |
attn_drop_rate=0.0, | |
use_checkpoint=False, | |
init_cfg: Optional[dict] = None, | |
) -> None: | |
super(MixMIMTransformer, self).__init__(init_cfg=init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = { | |
'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels' | |
} | |
assert isinstance(arch, dict) and essential_keys <= set(arch), \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims = self.arch_settings['embed_dims'] | |
self.depths = self.arch_settings['depths'] | |
self.num_heads = self.arch_settings['num_heads'] | |
self.encoder_stride = 32 | |
self.num_layers = len(self.depths) | |
self.qkv_bias = qkv_bias | |
self.drop_rate = drop_rate | |
self.attn_drop_rate = attn_drop_rate | |
self.use_checkpoint = use_checkpoint | |
self.mlp_ratio = mlp_ratio | |
self.window_size = window_size | |
_patch_cfg = dict( | |
in_channels=in_channels, | |
input_size=img_size, | |
embed_dims=self.embed_dims, | |
conv_type='Conv2d', | |
kernel_size=patch_size, | |
stride=patch_size, | |
norm_cfg=dict(type='LN'), | |
) | |
_patch_cfg.update(patch_cfg) | |
self.patch_embed = PatchEmbed(**_patch_cfg) | |
self.patch_resolution = self.patch_embed.init_out_size | |
self.dpr = [ | |
x.item() | |
for x in torch.linspace(0, drop_path_rate, sum(self.depths)) | |
] | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
self.layers.append( | |
MixMIMLayer( | |
embed_dims=int(self.embed_dims * 2**i_layer), | |
input_resolution=(self.patch_resolution[0] // (2**i_layer), | |
self.patch_resolution[1] // | |
(2**i_layer)), | |
depth=self.depths[i_layer], | |
num_heads=self.num_heads[i_layer], | |
window_size=self.window_size[i_layer], | |
mlp_ratio=self.mlp_ratio, | |
qkv_bias=self.qkv_bias, | |
proj_drop_rate=self.drop_rate, | |
attn_drop_rate=self.attn_drop_rate, | |
drop_path_rate=self.dpr[sum(self.depths[:i_layer] | |
):sum(self.depths[:i_layer + | |
1])], | |
norm_cfg=norm_cfg, | |
downsample=PatchMerging if | |
(i_layer < self.num_layers - 1) else None, | |
use_checkpoint=self.use_checkpoint)) | |
self.num_features = int(self.embed_dims * 2**(self.num_layers - 1)) | |
self.drop_after_pos = nn.Dropout(p=self.drop_rate) | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
self.num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
self.absolute_pos_embed = nn.Parameter( | |
torch.zeros(1, self.num_patches, self.embed_dims), | |
requires_grad=False) | |
_, self.norm = build_norm_layer(norm_cfg, self.num_features) | |
def forward(self, x: torch.Tensor): | |
x, _ = self.patch_embed(x) | |
x = x + self.absolute_pos_embed | |
x = self.drop_after_pos(x) | |
for layer in self.layers: | |
x = layer(x, attn_mask=None) | |
x = self.norm(x) | |
x = self.avgpool(x.transpose(1, 2)) # B C 1 | |
x = torch.flatten(x, 1) | |
return (x, ) | |