File size: 18,445 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Union

import torch
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.drop import DropPath
from mmcv.cnn.bricks.transformer import PatchEmbed, PatchMerging
from mmengine.model import BaseModule
from torch import nn
from torch.utils.checkpoint import checkpoint

from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcls.models.backbones.vision_transformer import TransformerEncoderLayer
from mmcls.models.utils.attention import WindowMSA
from mmcls.models.utils.helpers import to_2tuple
from mmcls.registry import MODELS


class MixMIMWindowAttention(WindowMSA):
    """MixMIM Window Attention.

    Compared with WindowMSA, we add some modifications
    in ``forward`` to meet the requirement of MixMIM during
    pretraining.

    Implements one windown attention in MixMIM.
    Args:
        embed_dims (int): The feature dimension.
        window_size (list): The height and width of the window.
        num_heads (int): The number of head in attention.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        qk_scale (float, optional): Override default qk scale of
            ``head_dim ** -0.5`` if set. Defaults to None.
        attn_drop_rate (float): attention drop rate.
            Defaults to 0.
        proj_drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 window_size,
                 num_heads,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop_rate=0.,
                 proj_drop_rate=0.,
                 init_cfg=None):

        super().__init__(
            embed_dims=embed_dims,
            window_size=window_size,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop_rate,
            proj_drop=proj_drop_rate,
            init_cfg=init_cfg)

    def forward(self, x, mask=None):

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[
            2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            mask = mask.reshape(B_, 1, 1, N)
            mask_new = mask * mask.transpose(
                2, 3) + (1 - mask) * (1 - mask).transpose(2, 3)
            mask_new = 1 - mask_new

            if mask_new.dtype == torch.float16:
                attn = attn - 65500 * mask_new
            else:
                attn = attn - 1e30 * mask_new

            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class MixMIMBlock(TransformerEncoderLayer):
    """MixMIM Block. Implements one block in MixMIM.

    Args:
        embed_dims (int): The feature dimension.
        input_resolution (tuple): Input resolution of this layer.
        num_heads (int): The number of head in attention,
        window_size (list): The height and width of the window.
        mlp_ratio (int): The MLP ration in FFN.
        num_fcs (int): The number of linear layers in a block.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        proj_drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        attn_drop_rate (float): attention drop rate.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate.
            Defaults to 0.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 input_resolution,
                 num_heads,
                 window_size=7,
                 mlp_ratio=4.,
                 num_fcs=2,
                 qkv_bias=True,
                 proj_drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 init_cfg: Optional[Union[List[dict], dict]] = None) -> None:

        super().__init__(
            embed_dims=embed_dims,
            num_heads=num_heads,
            feedforward_channels=int(mlp_ratio * embed_dims),
            drop_rate=proj_drop_rate,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate,
            num_fcs=num_fcs,
            qkv_bias=qkv_bias,
            act_cfg=act_cfg,
            norm_cfg=norm_cfg,
            init_cfg=init_cfg)

        self.embed_dims = embed_dims
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio

        if min(self.input_resolution) <= self.window_size:
            self.window_size = min(self.input_resolution)

        self.attn = MixMIMWindowAttention(
            embed_dims=embed_dims,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop_rate=attn_drop_rate,
            proj_drop_rate=proj_drop_rate)

        self.drop_path = DropPath(
            drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    @staticmethod
    def window_reverse(windows, H, W, window_size):
        B = int(windows.shape[0] / (H * W / window_size / window_size))
        x = windows.view(B, H // window_size, W // window_size, window_size,
                         window_size, -1)
        x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
        return x

    @staticmethod
    def window_partition(x, window_size):
        B, H, W, C = x.shape
        x = x.view(B, H // window_size, window_size, W // window_size,
                   window_size, C)
        windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
        windows = windows.view(-1, window_size, window_size, C)
        return windows

    def forward(self, x, attn_mask=None):
        H, W = self.input_resolution
        B, L, C = x.shape

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # partition windows
        x_windows = self.window_partition(
            x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size,
                                   C)  # nW*B, window_size*window_size, C
        if attn_mask is not None:
            attn_mask = attn_mask.repeat(B, 1, 1)  # B, N, 1
            attn_mask = attn_mask.view(B, H, W, 1)
            attn_mask = self.window_partition(attn_mask, self.window_size)
            attn_mask = attn_mask.view(-1, self.window_size * self.window_size,
                                       1)

        # W-MSA/SW-MSA
        attn_windows = self.attn(
            x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size,
                                         self.window_size, C)
        x = self.window_reverse(attn_windows, H, W,
                                self.window_size)  # B H' W' C

        x = x.view(B, H * W, C)

        x = shortcut + self.drop_path(x)

        x = self.ffn(self.norm2(x), identity=x)  # ffn contains DropPath

        return x


class MixMIMLayer(BaseModule):
    """Implements one MixMIM layer, which may contains several MixMIM blocks.

    Args:
        embed_dims (int): The feature dimension.
        input_resolution (tuple): Input resolution of this layer.
        depth (int): The number of blocks in this layer.
        num_heads (int): The number of head in attention,
        window_size (list): The height and width of the window.
        mlp_ratio (int): The MLP ration in FFN.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        proj_drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        attn_drop_rate (float): attention drop rate.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate.
            Defaults to 0.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        downsample (class, optional): Downsample the output of blocks b
            y patch merging.Defaults to None.
        use_checkpoint (bool): Whether use the checkpoint to
        reduce GPU memory cost.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims: int,
                 input_resolution: int,
                 depth: int,
                 num_heads: int,
                 window_size: int,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 proj_drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=[0.],
                 norm_cfg=dict(type='LN'),
                 downsample=None,
                 use_checkpoint=False,
                 init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
        super().__init__(init_cfg=init_cfg)
        self.embed_dims = embed_dims
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList()
        for i in range(depth):
            self.blocks.append(
                MixMIMBlock(
                    embed_dims=embed_dims,
                    input_resolution=input_resolution,
                    num_heads=num_heads,
                    window_size=window_size,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    proj_drop_rate=proj_drop_rate,
                    attn_drop_rate=attn_drop_rate,
                    drop_path_rate=drop_path_rate[i],
                    norm_cfg=norm_cfg))
        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(
                in_channels=embed_dims,
                out_channels=2 * embed_dims,
                norm_cfg=norm_cfg)
        else:
            self.downsample = None

    def forward(self, x, attn_mask=None):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask=attn_mask)
        if self.downsample is not None:
            x, _ = self.downsample(x, self.input_resolution)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.embed_dims}, \
    input_resolution={self.input_resolution}, depth={self.depth}'


@MODELS.register_module()
class MixMIMTransformer(BaseBackbone):
    """MixMIM backbone.

    A PyTorch implement of : ` MixMIM: Mixed and Masked Image
    Modeling for Efficient Visual Representation Learning
    <https://arxiv.org/abs/2205.13137>`_

    Args:
        arch (str | dict): MixMIM architecture. If use string,
            choose from 'base','large' and 'huge'.
            If use dict, it should have below keys:

            - **embed_dims** (int): The dimensions of embedding.
            - **depths** (int): The number of transformer encoder layers.
            - **num_heads** (int): The number of heads in attention modules.

            Defaults to 'base'.
        mlp_ratio (int): The mlp ratio in FFN.  Defaults to 4.
        img_size (int | tuple): The expected input image shape. Because we
            support dynamic input shape, just set the argument to mlp_ratio
            the most common input image shape. Defaults to 224.
        patch_size (int | tuple): The patch size in patch embedding.
            Defaults to 16.
        in_channels (int): The num of input channels. Defaults to 3.
        window_size (list): The height and width of the window.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        patch_cfg (dict): Extra config dict for patch embedding.
            Defaults to an empty dict.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        attn_drop_rate (float): attention drop rate. Defaults to 0.
        use_checkpoint (bool): Whether use the checkpoint to
        reduce GPU memory cost.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """
    arch_zoo = {
        **dict.fromkeys(
            ['b', 'base'], {
                'embed_dims': 128,
                'depths': [2, 2, 18, 2],
                'num_heads': [4, 8, 16, 32]
            }),
        **dict.fromkeys(
            ['l', 'large'], {
                'embed_dims': 192,
                'depths': [2, 2, 18, 2],
                'num_heads': [6, 12, 24, 48]
            }),
        **dict.fromkeys(
            ['h', 'huge'], {
                'embed_dims': 352,
                'depths': [2, 2, 18, 2],
                'num_heads': [11, 22, 44, 88]
            }),
    }

    def __init__(
        self,
        arch='base',
        mlp_ratio=4,
        img_size=224,
        patch_size=4,
        in_channels=3,
        window_size=[14, 14, 14, 7],
        qkv_bias=True,
        patch_cfg=dict(),
        norm_cfg=dict(type='LN'),
        drop_rate=0.0,
        drop_path_rate=0.0,
        attn_drop_rate=0.0,
        use_checkpoint=False,
        init_cfg: Optional[dict] = None,
    ) -> None:
        super(MixMIMTransformer, self).__init__(init_cfg=init_cfg)

        if isinstance(arch, str):
            arch = arch.lower()
            assert arch in set(self.arch_zoo), \
                f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
            self.arch_settings = self.arch_zoo[arch]
        else:
            essential_keys = {
                'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels'
            }
            assert isinstance(arch, dict) and essential_keys <= set(arch), \
                f'Custom arch needs a dict with keys {essential_keys}'
            self.arch_settings = arch

        self.embed_dims = self.arch_settings['embed_dims']
        self.depths = self.arch_settings['depths']
        self.num_heads = self.arch_settings['num_heads']

        self.encoder_stride = 32

        self.num_layers = len(self.depths)
        self.qkv_bias = qkv_bias
        self.drop_rate = drop_rate
        self.attn_drop_rate = attn_drop_rate
        self.use_checkpoint = use_checkpoint
        self.mlp_ratio = mlp_ratio
        self.window_size = window_size

        _patch_cfg = dict(
            in_channels=in_channels,
            input_size=img_size,
            embed_dims=self.embed_dims,
            conv_type='Conv2d',
            kernel_size=patch_size,
            stride=patch_size,
            norm_cfg=dict(type='LN'),
        )
        _patch_cfg.update(patch_cfg)
        self.patch_embed = PatchEmbed(**_patch_cfg)
        self.patch_resolution = self.patch_embed.init_out_size

        self.dpr = [
            x.item()
            for x in torch.linspace(0, drop_path_rate, sum(self.depths))
        ]
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            self.layers.append(
                MixMIMLayer(
                    embed_dims=int(self.embed_dims * 2**i_layer),
                    input_resolution=(self.patch_resolution[0] // (2**i_layer),
                                      self.patch_resolution[1] //
                                      (2**i_layer)),
                    depth=self.depths[i_layer],
                    num_heads=self.num_heads[i_layer],
                    window_size=self.window_size[i_layer],
                    mlp_ratio=self.mlp_ratio,
                    qkv_bias=self.qkv_bias,
                    proj_drop_rate=self.drop_rate,
                    attn_drop_rate=self.attn_drop_rate,
                    drop_path_rate=self.dpr[sum(self.depths[:i_layer]
                                                ):sum(self.depths[:i_layer +
                                                                  1])],
                    norm_cfg=norm_cfg,
                    downsample=PatchMerging if
                    (i_layer < self.num_layers - 1) else None,
                    use_checkpoint=self.use_checkpoint))

        self.num_features = int(self.embed_dims * 2**(self.num_layers - 1))
        self.drop_after_pos = nn.Dropout(p=self.drop_rate)

        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]
        self.absolute_pos_embed = nn.Parameter(
            torch.zeros(1, self.num_patches, self.embed_dims),
            requires_grad=False)

        _, self.norm = build_norm_layer(norm_cfg, self.num_features)

    def forward(self, x: torch.Tensor):
        x, _ = self.patch_embed(x)

        x = x + self.absolute_pos_embed
        x = self.drop_after_pos(x)

        for layer in self.layers:
            x = layer(x, attn_mask=None)

        x = self.norm(x)
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)

        return (x, )