Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Sequence, Union | |
import mmengine | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from mmengine.evaluator import BaseMetric | |
from mmcls.registry import METRICS | |
def to_tensor(value): | |
"""Convert value to torch.Tensor.""" | |
if isinstance(value, np.ndarray): | |
value = torch.from_numpy(value) | |
elif isinstance(value, Sequence) and not mmengine.is_str(value): | |
value = torch.tensor(value) | |
elif not isinstance(value, torch.Tensor): | |
raise TypeError(f'{type(value)} is not an available argument.') | |
return value | |
def _precision_recall_f1_support(pred_positive, gt_positive, average): | |
"""calculate base classification task metrics, such as precision, recall, | |
f1_score, support.""" | |
average_options = ['micro', 'macro', None] | |
assert average in average_options, 'Invalid `average` argument, ' \ | |
f'please specicy from {average_options}.' | |
# ignore -1 target such as difficult sample that is not wanted | |
# in evaluation results. | |
# only for calculate multi-label without affecting single-label behavior | |
ignored_index = gt_positive == -1 | |
pred_positive[ignored_index] = 0 | |
gt_positive[ignored_index] = 0 | |
class_correct = (pred_positive & gt_positive) | |
if average == 'micro': | |
tp_sum = class_correct.sum() | |
pred_sum = pred_positive.sum() | |
gt_sum = gt_positive.sum() | |
else: | |
tp_sum = class_correct.sum(0) | |
pred_sum = pred_positive.sum(0) | |
gt_sum = gt_positive.sum(0) | |
precision = tp_sum / torch.clamp(pred_sum, min=1).float() * 100 | |
recall = tp_sum / torch.clamp(gt_sum, min=1).float() * 100 | |
f1_score = 2 * precision * recall / torch.clamp( | |
precision + recall, min=torch.finfo(torch.float32).eps) | |
if average in ['macro', 'micro']: | |
precision = precision.mean(0) | |
recall = recall.mean(0) | |
f1_score = f1_score.mean(0) | |
support = gt_sum.sum(0) | |
else: | |
support = gt_sum | |
return precision, recall, f1_score, support | |
class Accuracy(BaseMetric): | |
r"""Accuracy evaluation metric. | |
For either binary classification or multi-class classification, the | |
accuracy is the fraction of correct predictions in all predictions: | |
.. math:: | |
\text{Accuracy} = \frac{N_{\text{correct}}}{N_{\text{all}}} | |
Args: | |
topk (int | Sequence[int]): If the ground truth label matches one of | |
the best **k** predictions, the sample will be regard as a positive | |
prediction. If the parameter is a tuple, all of top-k accuracy will | |
be calculated and outputted together. Defaults to 1. | |
thrs (Sequence[float | None] | float | None): If a float, predictions | |
with score lower than the threshold will be regard as the negative | |
prediction. If None, not apply threshold. If the parameter is a | |
tuple, accuracy based on all thresholds will be calculated and | |
outputted together. Defaults to 0. | |
collect_device (str): Device name used for collecting results from | |
different ranks during distributed training. Must be 'cpu' or | |
'gpu'. Defaults to 'cpu'. | |
prefix (str, optional): The prefix that will be added in the metric | |
names to disambiguate homonymous metrics of different evaluators. | |
If prefix is not provided in the argument, self.default_prefix | |
will be used instead. Defaults to None. | |
Examples: | |
>>> import torch | |
>>> from mmcls.evaluation import Accuracy | |
>>> # -------------------- The Basic Usage -------------------- | |
>>> y_pred = [0, 2, 1, 3] | |
>>> y_true = [0, 1, 2, 3] | |
>>> Accuracy.calculate(y_pred, y_true) | |
tensor([50.]) | |
>>> # Calculate the top1 and top5 accuracy. | |
>>> y_score = torch.rand((1000, 10)) | |
>>> y_true = torch.zeros((1000, )) | |
>>> Accuracy.calculate(y_score, y_true, topk=(1, 5)) | |
[[tensor([9.9000])], [tensor([51.5000])]] | |
>>> | |
>>> # ------------------- Use with Evalutor ------------------- | |
>>> from mmcls.structures import ClsDataSample | |
>>> from mmengine.evaluator import Evaluator | |
>>> data_samples = [ | |
... ClsDataSample().set_gt_label(0).set_pred_score(torch.rand(10)) | |
... for i in range(1000) | |
... ] | |
>>> evaluator = Evaluator(metrics=Accuracy(topk=(1, 5))) | |
>>> evaluator.process(data_samples) | |
>>> evaluator.evaluate(1000) | |
{ | |
'accuracy/top1': 9.300000190734863, | |
'accuracy/top5': 51.20000076293945 | |
} | |
""" | |
default_prefix: Optional[str] = 'accuracy' | |
def __init__(self, | |
topk: Union[int, Sequence[int]] = (1, ), | |
thrs: Union[float, Sequence[Union[float, None]], None] = 0., | |
collect_device: str = 'cpu', | |
prefix: Optional[str] = None) -> None: | |
super().__init__(collect_device=collect_device, prefix=prefix) | |
if isinstance(topk, int): | |
self.topk = (topk, ) | |
else: | |
self.topk = tuple(topk) | |
if isinstance(thrs, float) or thrs is None: | |
self.thrs = (thrs, ) | |
else: | |
self.thrs = tuple(thrs) | |
def process(self, data_batch, data_samples: Sequence[dict]): | |
"""Process one batch of data samples. | |
The processed results should be stored in ``self.results``, which will | |
be used to computed the metrics when all batches have been processed. | |
Args: | |
data_batch: A batch of data from the dataloader. | |
data_samples (Sequence[dict]): A batch of outputs from the model. | |
""" | |
for data_sample in data_samples: | |
result = dict() | |
pred_label = data_sample['pred_label'] | |
gt_label = data_sample['gt_label'] | |
if 'score' in pred_label: | |
result['pred_score'] = pred_label['score'].cpu() | |
else: | |
result['pred_label'] = pred_label['label'].cpu() | |
result['gt_label'] = gt_label['label'].cpu() | |
# Save the result to `self.results`. | |
self.results.append(result) | |
def compute_metrics(self, results: List): | |
"""Compute the metrics from processed results. | |
Args: | |
results (dict): The processed results of each batch. | |
Returns: | |
Dict: The computed metrics. The keys are the names of the metrics, | |
and the values are corresponding results. | |
""" | |
# NOTICE: don't access `self.results` from the method. | |
metrics = {} | |
# concat | |
target = torch.cat([res['gt_label'] for res in results]) | |
if 'pred_score' in results[0]: | |
pred = torch.stack([res['pred_score'] for res in results]) | |
try: | |
acc = self.calculate(pred, target, self.topk, self.thrs) | |
except ValueError as e: | |
# If the topk is invalid. | |
raise ValueError( | |
str(e) + ' Please check the `val_evaluator` and ' | |
'`test_evaluator` fields in your config file.') | |
multi_thrs = len(self.thrs) > 1 | |
for i, k in enumerate(self.topk): | |
for j, thr in enumerate(self.thrs): | |
name = f'top{k}' | |
if multi_thrs: | |
name += '_no-thr' if thr is None else f'_thr-{thr:.2f}' | |
metrics[name] = acc[i][j].item() | |
else: | |
# If only label in the `pred_label`. | |
pred = torch.cat([res['pred_label'] for res in results]) | |
acc = self.calculate(pred, target, self.topk, self.thrs) | |
metrics['top1'] = acc.item() | |
return metrics | |
def calculate( | |
pred: Union[torch.Tensor, np.ndarray, Sequence], | |
target: Union[torch.Tensor, np.ndarray, Sequence], | |
topk: Sequence[int] = (1, ), | |
thrs: Sequence[Union[float, None]] = (0., ), | |
) -> Union[torch.Tensor, List[List[torch.Tensor]]]: | |
"""Calculate the accuracy. | |
Args: | |
pred (torch.Tensor | np.ndarray | Sequence): The prediction | |
results. It can be labels (N, ), or scores of every | |
class (N, C). | |
target (torch.Tensor | np.ndarray | Sequence): The target of | |
each prediction with shape (N, ). | |
thrs (Sequence[float | None]): Predictions with scores under | |
the thresholds are considered negative. It's only used | |
when ``pred`` is scores. None means no thresholds. | |
Defaults to (0., ). | |
thrs (Sequence[float]): Predictions with scores under | |
the thresholds are considered negative. It's only used | |
when ``pred`` is scores. Defaults to (0., ). | |
Returns: | |
torch.Tensor | List[List[torch.Tensor]]: Accuracy. | |
- torch.Tensor: If the ``pred`` is a sequence of label instead of | |
score (number of dimensions is 1). Only return a top-1 accuracy | |
tensor, and ignore the argument ``topk` and ``thrs``. | |
- List[List[torch.Tensor]]: If the ``pred`` is a sequence of score | |
(number of dimensions is 2). Return the accuracy on each ``topk`` | |
and ``thrs``. And the first dim is ``topk``, the second dim is | |
``thrs``. | |
""" | |
pred = to_tensor(pred) | |
target = to_tensor(target).to(torch.int64) | |
num = pred.size(0) | |
assert pred.size(0) == target.size(0), \ | |
f"The size of pred ({pred.size(0)}) doesn't match "\ | |
f'the target ({target.size(0)}).' | |
if pred.ndim == 1: | |
# For pred label, ignore topk and acc | |
pred_label = pred.int() | |
correct = pred.eq(target).float().sum(0, keepdim=True) | |
acc = correct.mul_(100. / num) | |
return acc | |
else: | |
# For pred score, calculate on all topk and thresholds. | |
pred = pred.float() | |
maxk = max(topk) | |
if maxk > pred.size(1): | |
raise ValueError( | |
f'Top-{maxk} accuracy is unavailable since the number of ' | |
f'categories is {pred.size(1)}.') | |
pred_score, pred_label = pred.topk(maxk, dim=1) | |
pred_label = pred_label.t() | |
correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) | |
results = [] | |
for k in topk: | |
results.append([]) | |
for thr in thrs: | |
# Only prediction values larger than thr are counted | |
# as correct | |
_correct = correct | |
if thr is not None: | |
_correct = _correct & (pred_score.t() > thr) | |
correct_k = _correct[:k].reshape(-1).float().sum( | |
0, keepdim=True) | |
acc = correct_k.mul_(100. / num) | |
results[-1].append(acc) | |
return results | |
class SingleLabelMetric(BaseMetric): | |
r"""A collection of precision, recall, f1-score and support for | |
single-label tasks. | |
The collection of metrics is for single-label multi-class classification. | |
And all these metrics are based on the confusion matrix of every category: | |
.. image:: ../../_static/image/confusion-matrix.png | |
:width: 60% | |
:align: center | |
All metrics can be formulated use variables above: | |
**Precision** is the fraction of correct predictions in all predictions: | |
.. math:: | |
\text{Precision} = \frac{TP}{TP+FP} | |
**Recall** is the fraction of correct predictions in all targets: | |
.. math:: | |
\text{Recall} = \frac{TP}{TP+FN} | |
**F1-score** is the harmonic mean of the precision and recall: | |
.. math:: | |
\text{F1-score} = \frac{2\times\text{Recall}\times\text{Precision}}{\text{Recall}+\text{Precision}} | |
**Support** is the number of samples: | |
.. math:: | |
\text{Support} = TP + TN + FN + FP | |
Args: | |
thrs (Sequence[float | None] | float | None): If a float, predictions | |
with score lower than the threshold will be regard as the negative | |
prediction. If None, only the top-1 prediction will be regard as | |
the positive prediction. If the parameter is a tuple, accuracy | |
based on all thresholds will be calculated and outputted together. | |
Defaults to 0. | |
items (Sequence[str]): The detailed metric items to evaluate, select | |
from "precision", "recall", "f1-score" and "support". | |
Defaults to ``('precision', 'recall', 'f1-score')``. | |
average (str | None): How to calculate the final metrics from the | |
confusion matrix of every category. It supports three modes: | |
- `"macro"`: Calculate metrics for each category, and calculate | |
the mean value over all categories. | |
- `"micro"`: Average the confusion matrix over all categories and | |
calculate metrics on the mean confusion matrix. | |
- `None`: Calculate metrics of every category and output directly. | |
Defaults to "macro". | |
num_classes (int, optional): The number of classes. Defaults to None. | |
collect_device (str): Device name used for collecting results from | |
different ranks during distributed training. Must be 'cpu' or | |
'gpu'. Defaults to 'cpu'. | |
prefix (str, optional): The prefix that will be added in the metric | |
names to disambiguate homonymous metrics of different evaluators. | |
If prefix is not provided in the argument, self.default_prefix | |
will be used instead. Defaults to None. | |
Examples: | |
>>> import torch | |
>>> from mmcls.evaluation import SingleLabelMetric | |
>>> # -------------------- The Basic Usage -------------------- | |
>>> y_pred = [0, 1, 1, 3] | |
>>> y_true = [0, 2, 1, 3] | |
>>> # Output precision, recall, f1-score and support. | |
>>> SingleLabelMetric.calculate(y_pred, y_true, num_classes=4) | |
(tensor(62.5000), tensor(75.), tensor(66.6667), tensor(4)) | |
>>> # Calculate with different thresholds. | |
>>> y_score = torch.rand((1000, 10)) | |
>>> y_true = torch.zeros((1000, )) | |
>>> SingleLabelMetric.calculate(y_score, y_true, thrs=(0., 0.9)) | |
[(tensor(10.), tensor(0.9500), tensor(1.7352), tensor(1000)), | |
(tensor(10.), tensor(0.5500), tensor(1.0427), tensor(1000))] | |
>>> | |
>>> # ------------------- Use with Evalutor ------------------- | |
>>> from mmcls.structures import ClsDataSample | |
>>> from mmengine.evaluator import Evaluator | |
>>> data_samples = [ | |
... ClsDataSample().set_gt_label(i%5).set_pred_score(torch.rand(5)) | |
... for i in range(1000) | |
... ] | |
>>> evaluator = Evaluator(metrics=SingleLabelMetric()) | |
>>> evaluator.process(data_samples) | |
>>> evaluator.evaluate(1000) | |
{'single-label/precision': 19.650691986083984, | |
'single-label/recall': 19.600000381469727, | |
'single-label/f1-score': 19.619548797607422} | |
>>> # Evaluate on each class | |
>>> evaluator = Evaluator(metrics=SingleLabelMetric(average=None)) | |
>>> evaluator.process(data_samples) | |
>>> evaluator.evaluate(1000) | |
{ | |
'single-label/precision_classwise': [21.1, 18.7, 17.8, 19.4, 16.1], | |
'single-label/recall_classwise': [18.5, 18.5, 17.0, 20.0, 18.0], | |
'single-label/f1-score_classwise': [19.7, 18.6, 17.1, 19.7, 17.0] | |
} | |
""" # noqa: E501 | |
default_prefix: Optional[str] = 'single-label' | |
def __init__(self, | |
thrs: Union[float, Sequence[Union[float, None]], None] = 0., | |
items: Sequence[str] = ('precision', 'recall', 'f1-score'), | |
average: Optional[str] = 'macro', | |
num_classes: Optional[int] = None, | |
collect_device: str = 'cpu', | |
prefix: Optional[str] = None) -> None: | |
super().__init__(collect_device=collect_device, prefix=prefix) | |
if isinstance(thrs, float) or thrs is None: | |
self.thrs = (thrs, ) | |
else: | |
self.thrs = tuple(thrs) | |
for item in items: | |
assert item in ['precision', 'recall', 'f1-score', 'support'], \ | |
f'The metric {item} is not supported by `SingleLabelMetric`,' \ | |
' please specicy from "precision", "recall", "f1-score" and ' \ | |
'"support".' | |
self.items = tuple(items) | |
self.average = average | |
self.num_classes = num_classes | |
def process(self, data_batch, data_samples: Sequence[dict]): | |
"""Process one batch of data samples. | |
The processed results should be stored in ``self.results``, which will | |
be used to computed the metrics when all batches have been processed. | |
Args: | |
data_batch: A batch of data from the dataloader. | |
data_samples (Sequence[dict]): A batch of outputs from the model. | |
""" | |
for data_sample in data_samples: | |
result = dict() | |
pred_label = data_sample['pred_label'] | |
gt_label = data_sample['gt_label'] | |
if 'score' in pred_label: | |
result['pred_score'] = pred_label['score'].cpu() | |
else: | |
num_classes = self.num_classes or data_sample.get( | |
'num_classes') | |
assert num_classes is not None, \ | |
'The `num_classes` must be specified if `pred_label` has '\ | |
'only `label`.' | |
result['pred_label'] = pred_label['label'].cpu() | |
result['num_classes'] = num_classes | |
result['gt_label'] = gt_label['label'].cpu() | |
# Save the result to `self.results`. | |
self.results.append(result) | |
def compute_metrics(self, results: List): | |
"""Compute the metrics from processed results. | |
Args: | |
results (list): The processed results of each batch. | |
Returns: | |
Dict: The computed metrics. The keys are the names of the metrics, | |
and the values are corresponding results. | |
""" | |
# NOTICE: don't access `self.results` from the method. `self.results` | |
# are a list of results from multiple batch, while the input `results` | |
# are the collected results. | |
metrics = {} | |
def pack_results(precision, recall, f1_score, support): | |
single_metrics = {} | |
if 'precision' in self.items: | |
single_metrics['precision'] = precision | |
if 'recall' in self.items: | |
single_metrics['recall'] = recall | |
if 'f1-score' in self.items: | |
single_metrics['f1-score'] = f1_score | |
if 'support' in self.items: | |
single_metrics['support'] = support | |
return single_metrics | |
# concat | |
target = torch.cat([res['gt_label'] for res in results]) | |
if 'pred_score' in results[0]: | |
pred = torch.stack([res['pred_score'] for res in results]) | |
metrics_list = self.calculate( | |
pred, target, thrs=self.thrs, average=self.average) | |
multi_thrs = len(self.thrs) > 1 | |
for i, thr in enumerate(self.thrs): | |
if multi_thrs: | |
suffix = '_no-thr' if thr is None else f'_thr-{thr:.2f}' | |
else: | |
suffix = '' | |
for k, v in pack_results(*metrics_list[i]).items(): | |
metrics[k + suffix] = v | |
else: | |
# If only label in the `pred_label`. | |
pred = torch.cat([res['pred_label'] for res in results]) | |
res = self.calculate( | |
pred, | |
target, | |
average=self.average, | |
num_classes=results[0]['num_classes']) | |
metrics = pack_results(*res) | |
result_metrics = dict() | |
for k, v in metrics.items(): | |
if self.average is None: | |
result_metrics[k + '_classwise'] = v.cpu().detach().tolist() | |
elif self.average == 'micro': | |
result_metrics[k + f'_{self.average}'] = v.item() | |
else: | |
result_metrics[k] = v.item() | |
return result_metrics | |
def calculate( | |
pred: Union[torch.Tensor, np.ndarray, Sequence], | |
target: Union[torch.Tensor, np.ndarray, Sequence], | |
thrs: Sequence[Union[float, None]] = (0., ), | |
average: Optional[str] = 'macro', | |
num_classes: Optional[int] = None, | |
) -> Union[torch.Tensor, List[torch.Tensor]]: | |
"""Calculate the precision, recall, f1-score and support. | |
Args: | |
pred (torch.Tensor | np.ndarray | Sequence): The prediction | |
results. It can be labels (N, ), or scores of every | |
class (N, C). | |
target (torch.Tensor | np.ndarray | Sequence): The target of | |
each prediction with shape (N, ). | |
thrs (Sequence[float | None]): Predictions with scores under | |
the thresholds are considered negative. It's only used | |
when ``pred`` is scores. None means no thresholds. | |
Defaults to (0., ). | |
average (str | None): How to calculate the final metrics from | |
the confusion matrix of every category. It supports three | |
modes: | |
- `"macro"`: Calculate metrics for each category, and calculate | |
the mean value over all categories. | |
- `"micro"`: Average the confusion matrix over all categories | |
and calculate metrics on the mean confusion matrix. | |
- `None`: Calculate metrics of every category and output | |
directly. | |
Defaults to "macro". | |
num_classes (Optional, int): The number of classes. If the ``pred`` | |
is label instead of scores, this argument is required. | |
Defaults to None. | |
Returns: | |
Tuple: The tuple contains precision, recall and f1-score. | |
And the type of each item is: | |
- torch.Tensor: If the ``pred`` is a sequence of label instead of | |
score (number of dimensions is 1). Only returns a tensor for | |
each metric. The shape is (1, ) if ``classwise`` is False, and | |
(C, ) if ``classwise`` is True. | |
- List[torch.Tensor]: If the ``pred`` is a sequence of score | |
(number of dimensions is 2). Return the metrics on each ``thrs``. | |
The shape of tensor is (1, ) if ``classwise`` is False, and (C, ) | |
if ``classwise`` is True. | |
""" | |
average_options = ['micro', 'macro', None] | |
assert average in average_options, 'Invalid `average` argument, ' \ | |
f'please specicy from {average_options}.' | |
pred = to_tensor(pred) | |
target = to_tensor(target).to(torch.int64) | |
assert pred.size(0) == target.size(0), \ | |
f"The size of pred ({pred.size(0)}) doesn't match "\ | |
f'the target ({target.size(0)}).' | |
if pred.ndim == 1: | |
assert num_classes is not None, \ | |
'Please specicy the `num_classes` if the `pred` is labels ' \ | |
'intead of scores.' | |
gt_positive = F.one_hot(target.flatten(), num_classes) | |
pred_positive = F.one_hot(pred.to(torch.int64), num_classes) | |
return _precision_recall_f1_support(pred_positive, gt_positive, | |
average) | |
else: | |
# For pred score, calculate on all thresholds. | |
num_classes = pred.size(1) | |
pred_score, pred_label = torch.topk(pred, k=1) | |
pred_score = pred_score.flatten() | |
pred_label = pred_label.flatten() | |
gt_positive = F.one_hot(target.flatten(), num_classes) | |
results = [] | |
for thr in thrs: | |
pred_positive = F.one_hot(pred_label, num_classes) | |
if thr is not None: | |
pred_positive[pred_score <= thr] = 0 | |
results.append( | |
_precision_recall_f1_support(pred_positive, gt_positive, | |
average)) | |
return results | |