File size: 24,663 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Union

import mmengine
import numpy as np
import torch
import torch.nn.functional as F
from mmengine.evaluator import BaseMetric

from mmcls.registry import METRICS


def to_tensor(value):
    """Convert value to torch.Tensor."""
    if isinstance(value, np.ndarray):
        value = torch.from_numpy(value)
    elif isinstance(value, Sequence) and not mmengine.is_str(value):
        value = torch.tensor(value)
    elif not isinstance(value, torch.Tensor):
        raise TypeError(f'{type(value)} is not an available argument.')
    return value


def _precision_recall_f1_support(pred_positive, gt_positive, average):
    """calculate base classification task metrics, such as  precision, recall,
    f1_score, support."""
    average_options = ['micro', 'macro', None]
    assert average in average_options, 'Invalid `average` argument, ' \
        f'please specicy from {average_options}.'

    # ignore -1 target such as difficult sample that is not wanted
    # in evaluation results.
    # only for calculate multi-label without affecting single-label behavior
    ignored_index = gt_positive == -1
    pred_positive[ignored_index] = 0
    gt_positive[ignored_index] = 0

    class_correct = (pred_positive & gt_positive)
    if average == 'micro':
        tp_sum = class_correct.sum()
        pred_sum = pred_positive.sum()
        gt_sum = gt_positive.sum()
    else:
        tp_sum = class_correct.sum(0)
        pred_sum = pred_positive.sum(0)
        gt_sum = gt_positive.sum(0)

    precision = tp_sum / torch.clamp(pred_sum, min=1).float() * 100
    recall = tp_sum / torch.clamp(gt_sum, min=1).float() * 100
    f1_score = 2 * precision * recall / torch.clamp(
        precision + recall, min=torch.finfo(torch.float32).eps)
    if average in ['macro', 'micro']:
        precision = precision.mean(0)
        recall = recall.mean(0)
        f1_score = f1_score.mean(0)
        support = gt_sum.sum(0)
    else:
        support = gt_sum
    return precision, recall, f1_score, support


@METRICS.register_module()
class Accuracy(BaseMetric):
    r"""Accuracy evaluation metric.

    For either binary classification or multi-class classification, the
    accuracy is the fraction of correct predictions in all predictions:

    .. math::

        \text{Accuracy} = \frac{N_{\text{correct}}}{N_{\text{all}}}

    Args:
        topk (int | Sequence[int]): If the ground truth label matches one of
            the best **k** predictions, the sample will be regard as a positive
            prediction. If the parameter is a tuple, all of top-k accuracy will
            be calculated and outputted together. Defaults to 1.
        thrs (Sequence[float | None] | float | None): If a float, predictions
            with score lower than the threshold will be regard as the negative
            prediction. If None, not apply threshold. If the parameter is a
            tuple, accuracy based on all thresholds will be calculated and
            outputted together. Defaults to 0.
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.

    Examples:
        >>> import torch
        >>> from mmcls.evaluation import Accuracy
        >>> # -------------------- The Basic Usage --------------------
        >>> y_pred = [0, 2, 1, 3]
        >>> y_true = [0, 1, 2, 3]
        >>> Accuracy.calculate(y_pred, y_true)
        tensor([50.])
        >>> # Calculate the top1 and top5 accuracy.
        >>> y_score = torch.rand((1000, 10))
        >>> y_true = torch.zeros((1000, ))
        >>> Accuracy.calculate(y_score, y_true, topk=(1, 5))
        [[tensor([9.9000])], [tensor([51.5000])]]
        >>>
        >>> # ------------------- Use with Evalutor -------------------
        >>> from mmcls.structures import ClsDataSample
        >>> from mmengine.evaluator import Evaluator
        >>> data_samples = [
        ...     ClsDataSample().set_gt_label(0).set_pred_score(torch.rand(10))
        ...     for i in range(1000)
        ... ]
        >>> evaluator = Evaluator(metrics=Accuracy(topk=(1, 5)))
        >>> evaluator.process(data_samples)
        >>> evaluator.evaluate(1000)
        {
            'accuracy/top1': 9.300000190734863,
            'accuracy/top5': 51.20000076293945
        }
    """
    default_prefix: Optional[str] = 'accuracy'

    def __init__(self,
                 topk: Union[int, Sequence[int]] = (1, ),
                 thrs: Union[float, Sequence[Union[float, None]], None] = 0.,
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None) -> None:
        super().__init__(collect_device=collect_device, prefix=prefix)

        if isinstance(topk, int):
            self.topk = (topk, )
        else:
            self.topk = tuple(topk)

        if isinstance(thrs, float) or thrs is None:
            self.thrs = (thrs, )
        else:
            self.thrs = tuple(thrs)

    def process(self, data_batch, data_samples: Sequence[dict]):
        """Process one batch of data samples.

        The processed results should be stored in ``self.results``, which will
        be used to computed the metrics when all batches have been processed.

        Args:
            data_batch: A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of outputs from the model.
        """

        for data_sample in data_samples:
            result = dict()
            pred_label = data_sample['pred_label']
            gt_label = data_sample['gt_label']
            if 'score' in pred_label:
                result['pred_score'] = pred_label['score'].cpu()
            else:
                result['pred_label'] = pred_label['label'].cpu()
            result['gt_label'] = gt_label['label'].cpu()
            # Save the result to `self.results`.
            self.results.append(result)

    def compute_metrics(self, results: List):
        """Compute the metrics from processed results.

        Args:
            results (dict): The processed results of each batch.

        Returns:
            Dict: The computed metrics. The keys are the names of the metrics,
            and the values are corresponding results.
        """
        # NOTICE: don't access `self.results` from the method.
        metrics = {}

        # concat
        target = torch.cat([res['gt_label'] for res in results])
        if 'pred_score' in results[0]:
            pred = torch.stack([res['pred_score'] for res in results])

            try:
                acc = self.calculate(pred, target, self.topk, self.thrs)
            except ValueError as e:
                # If the topk is invalid.
                raise ValueError(
                    str(e) + ' Please check the `val_evaluator` and '
                    '`test_evaluator` fields in your config file.')

            multi_thrs = len(self.thrs) > 1
            for i, k in enumerate(self.topk):
                for j, thr in enumerate(self.thrs):
                    name = f'top{k}'
                    if multi_thrs:
                        name += '_no-thr' if thr is None else f'_thr-{thr:.2f}'
                    metrics[name] = acc[i][j].item()
        else:
            # If only label in the `pred_label`.
            pred = torch.cat([res['pred_label'] for res in results])
            acc = self.calculate(pred, target, self.topk, self.thrs)
            metrics['top1'] = acc.item()

        return metrics

    @staticmethod
    def calculate(
        pred: Union[torch.Tensor, np.ndarray, Sequence],
        target: Union[torch.Tensor, np.ndarray, Sequence],
        topk: Sequence[int] = (1, ),
        thrs: Sequence[Union[float, None]] = (0., ),
    ) -> Union[torch.Tensor, List[List[torch.Tensor]]]:
        """Calculate the accuracy.

        Args:
            pred (torch.Tensor | np.ndarray | Sequence): The prediction
                results. It can be labels (N, ), or scores of every
                class (N, C).
            target (torch.Tensor | np.ndarray | Sequence): The target of
                each prediction with shape (N, ).
            thrs (Sequence[float | None]): Predictions with scores under
                the thresholds are considered negative. It's only used
                when ``pred`` is scores. None means no thresholds.
                Defaults to (0., ).
            thrs (Sequence[float]): Predictions with scores under
                the thresholds are considered negative. It's only used
                when ``pred`` is scores. Defaults to (0., ).

        Returns:
            torch.Tensor | List[List[torch.Tensor]]: Accuracy.

            - torch.Tensor: If the ``pred`` is a sequence of label instead of
              score (number of dimensions is 1). Only return a top-1 accuracy
              tensor, and ignore the argument ``topk` and ``thrs``.
            - List[List[torch.Tensor]]: If the ``pred`` is a sequence of score
              (number of dimensions is 2). Return the accuracy on each ``topk``
              and ``thrs``. And the first dim is ``topk``, the second dim is
              ``thrs``.
        """

        pred = to_tensor(pred)
        target = to_tensor(target).to(torch.int64)
        num = pred.size(0)
        assert pred.size(0) == target.size(0), \
            f"The size of pred ({pred.size(0)}) doesn't match "\
            f'the target ({target.size(0)}).'

        if pred.ndim == 1:
            # For pred label, ignore topk and acc
            pred_label = pred.int()
            correct = pred.eq(target).float().sum(0, keepdim=True)
            acc = correct.mul_(100. / num)
            return acc
        else:
            # For pred score, calculate on all topk and thresholds.
            pred = pred.float()
            maxk = max(topk)

            if maxk > pred.size(1):
                raise ValueError(
                    f'Top-{maxk} accuracy is unavailable since the number of '
                    f'categories is {pred.size(1)}.')

            pred_score, pred_label = pred.topk(maxk, dim=1)
            pred_label = pred_label.t()
            correct = pred_label.eq(target.view(1, -1).expand_as(pred_label))
            results = []
            for k in topk:
                results.append([])
                for thr in thrs:
                    # Only prediction values larger than thr are counted
                    # as correct
                    _correct = correct
                    if thr is not None:
                        _correct = _correct & (pred_score.t() > thr)
                    correct_k = _correct[:k].reshape(-1).float().sum(
                        0, keepdim=True)
                    acc = correct_k.mul_(100. / num)
                    results[-1].append(acc)
            return results


@METRICS.register_module()
class SingleLabelMetric(BaseMetric):
    r"""A collection of precision, recall, f1-score and support for
    single-label tasks.

    The collection of metrics is for single-label multi-class classification.
    And all these metrics are based on the confusion matrix of every category:

    .. image:: ../../_static/image/confusion-matrix.png
       :width: 60%
       :align: center

    All metrics can be formulated use variables above:

    **Precision** is the fraction of correct predictions in all predictions:

    .. math::
        \text{Precision} = \frac{TP}{TP+FP}

    **Recall** is the fraction of correct predictions in all targets:

    .. math::
        \text{Recall} = \frac{TP}{TP+FN}

    **F1-score** is the harmonic mean of the precision and recall:

    .. math::
        \text{F1-score} = \frac{2\times\text{Recall}\times\text{Precision}}{\text{Recall}+\text{Precision}}

    **Support** is the number of samples:

    .. math::
        \text{Support} = TP + TN + FN + FP

    Args:
        thrs (Sequence[float | None] | float | None): If a float, predictions
            with score lower than the threshold will be regard as the negative
            prediction. If None, only the top-1 prediction will be regard as
            the positive prediction. If the parameter is a tuple, accuracy
            based on all thresholds will be calculated and outputted together.
            Defaults to 0.
        items (Sequence[str]): The detailed metric items to evaluate, select
            from "precision", "recall", "f1-score" and "support".
            Defaults to ``('precision', 'recall', 'f1-score')``.
        average (str | None): How to calculate the final metrics from the
            confusion matrix of every category. It supports three modes:

            - `"macro"`: Calculate metrics for each category, and calculate
              the mean value over all categories.
            - `"micro"`: Average the confusion matrix over all categories and
              calculate metrics on the mean confusion matrix.
            - `None`: Calculate metrics of every category and output directly.

            Defaults to "macro".
        num_classes (int, optional): The number of classes. Defaults to None.
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.

    Examples:
        >>> import torch
        >>> from mmcls.evaluation import SingleLabelMetric
        >>> # -------------------- The Basic Usage --------------------
        >>> y_pred = [0, 1, 1, 3]
        >>> y_true = [0, 2, 1, 3]
        >>> # Output precision, recall, f1-score and support.
        >>> SingleLabelMetric.calculate(y_pred, y_true, num_classes=4)
        (tensor(62.5000), tensor(75.), tensor(66.6667), tensor(4))
        >>> # Calculate with different thresholds.
        >>> y_score = torch.rand((1000, 10))
        >>> y_true = torch.zeros((1000, ))
        >>> SingleLabelMetric.calculate(y_score, y_true, thrs=(0., 0.9))
        [(tensor(10.), tensor(0.9500), tensor(1.7352), tensor(1000)),
         (tensor(10.), tensor(0.5500), tensor(1.0427), tensor(1000))]
        >>>
        >>> # ------------------- Use with Evalutor -------------------
        >>> from mmcls.structures import ClsDataSample
        >>> from mmengine.evaluator import Evaluator
        >>> data_samples = [
        ...     ClsDataSample().set_gt_label(i%5).set_pred_score(torch.rand(5))
        ...     for i in range(1000)
        ... ]
        >>> evaluator = Evaluator(metrics=SingleLabelMetric())
        >>> evaluator.process(data_samples)
        >>> evaluator.evaluate(1000)
        {'single-label/precision': 19.650691986083984,
         'single-label/recall': 19.600000381469727,
         'single-label/f1-score': 19.619548797607422}
        >>> # Evaluate on each class
        >>> evaluator = Evaluator(metrics=SingleLabelMetric(average=None))
        >>> evaluator.process(data_samples)
        >>> evaluator.evaluate(1000)
        {
            'single-label/precision_classwise': [21.1, 18.7, 17.8, 19.4, 16.1],
            'single-label/recall_classwise': [18.5, 18.5, 17.0, 20.0, 18.0],
            'single-label/f1-score_classwise': [19.7, 18.6, 17.1, 19.7, 17.0]
        }
    """  # noqa: E501
    default_prefix: Optional[str] = 'single-label'

    def __init__(self,
                 thrs: Union[float, Sequence[Union[float, None]], None] = 0.,
                 items: Sequence[str] = ('precision', 'recall', 'f1-score'),
                 average: Optional[str] = 'macro',
                 num_classes: Optional[int] = None,
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None) -> None:
        super().__init__(collect_device=collect_device, prefix=prefix)

        if isinstance(thrs, float) or thrs is None:
            self.thrs = (thrs, )
        else:
            self.thrs = tuple(thrs)

        for item in items:
            assert item in ['precision', 'recall', 'f1-score', 'support'], \
                f'The metric {item} is not supported by `SingleLabelMetric`,' \
                ' please specicy from "precision", "recall", "f1-score" and ' \
                '"support".'
        self.items = tuple(items)
        self.average = average
        self.num_classes = num_classes

    def process(self, data_batch, data_samples: Sequence[dict]):
        """Process one batch of data samples.

        The processed results should be stored in ``self.results``, which will
        be used to computed the metrics when all batches have been processed.

        Args:
            data_batch: A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of outputs from the model.
        """

        for data_sample in data_samples:
            result = dict()
            pred_label = data_sample['pred_label']
            gt_label = data_sample['gt_label']
            if 'score' in pred_label:
                result['pred_score'] = pred_label['score'].cpu()
            else:
                num_classes = self.num_classes or data_sample.get(
                    'num_classes')
                assert num_classes is not None, \
                    'The `num_classes` must be specified if `pred_label` has '\
                    'only `label`.'
                result['pred_label'] = pred_label['label'].cpu()
                result['num_classes'] = num_classes
            result['gt_label'] = gt_label['label'].cpu()
            # Save the result to `self.results`.
            self.results.append(result)

    def compute_metrics(self, results: List):
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict: The computed metrics. The keys are the names of the metrics,
            and the values are corresponding results.
        """
        # NOTICE: don't access `self.results` from the method. `self.results`
        # are a list of results from multiple batch, while the input `results`
        # are the collected results.
        metrics = {}

        def pack_results(precision, recall, f1_score, support):
            single_metrics = {}
            if 'precision' in self.items:
                single_metrics['precision'] = precision
            if 'recall' in self.items:
                single_metrics['recall'] = recall
            if 'f1-score' in self.items:
                single_metrics['f1-score'] = f1_score
            if 'support' in self.items:
                single_metrics['support'] = support
            return single_metrics

        # concat
        target = torch.cat([res['gt_label'] for res in results])
        if 'pred_score' in results[0]:
            pred = torch.stack([res['pred_score'] for res in results])
            metrics_list = self.calculate(
                pred, target, thrs=self.thrs, average=self.average)

            multi_thrs = len(self.thrs) > 1
            for i, thr in enumerate(self.thrs):
                if multi_thrs:
                    suffix = '_no-thr' if thr is None else f'_thr-{thr:.2f}'
                else:
                    suffix = ''

                for k, v in pack_results(*metrics_list[i]).items():
                    metrics[k + suffix] = v
        else:
            # If only label in the `pred_label`.
            pred = torch.cat([res['pred_label'] for res in results])
            res = self.calculate(
                pred,
                target,
                average=self.average,
                num_classes=results[0]['num_classes'])
            metrics = pack_results(*res)

        result_metrics = dict()
        for k, v in metrics.items():

            if self.average is None:
                result_metrics[k + '_classwise'] = v.cpu().detach().tolist()
            elif self.average == 'micro':
                result_metrics[k + f'_{self.average}'] = v.item()
            else:
                result_metrics[k] = v.item()

        return result_metrics

    @staticmethod
    def calculate(
        pred: Union[torch.Tensor, np.ndarray, Sequence],
        target: Union[torch.Tensor, np.ndarray, Sequence],
        thrs: Sequence[Union[float, None]] = (0., ),
        average: Optional[str] = 'macro',
        num_classes: Optional[int] = None,
    ) -> Union[torch.Tensor, List[torch.Tensor]]:
        """Calculate the precision, recall, f1-score and support.

        Args:
            pred (torch.Tensor | np.ndarray | Sequence): The prediction
                results. It can be labels (N, ), or scores of every
                class (N, C).
            target (torch.Tensor | np.ndarray | Sequence): The target of
                each prediction with shape (N, ).
            thrs (Sequence[float | None]): Predictions with scores under
                the thresholds are considered negative. It's only used
                when ``pred`` is scores. None means no thresholds.
                Defaults to (0., ).
            average (str | None): How to calculate the final metrics from
                the confusion matrix of every category. It supports three
                modes:

                - `"macro"`: Calculate metrics for each category, and calculate
                  the mean value over all categories.
                - `"micro"`: Average the confusion matrix over all categories
                  and calculate metrics on the mean confusion matrix.
                - `None`: Calculate metrics of every category and output
                  directly.

                Defaults to "macro".
            num_classes (Optional, int): The number of classes. If the ``pred``
                is label instead of scores, this argument is required.
                Defaults to None.

        Returns:
            Tuple: The tuple contains precision, recall and f1-score.
            And the type of each item is:

            - torch.Tensor: If the ``pred`` is a sequence of label instead of
              score (number of dimensions is 1). Only returns a tensor for
              each metric. The shape is (1, ) if ``classwise`` is False, and
              (C, ) if ``classwise`` is True.
            - List[torch.Tensor]: If the ``pred`` is a sequence of score
              (number of dimensions is 2). Return the metrics on each ``thrs``.
              The shape of tensor is (1, ) if ``classwise`` is False, and (C, )
              if ``classwise`` is True.
        """
        average_options = ['micro', 'macro', None]
        assert average in average_options, 'Invalid `average` argument, ' \
            f'please specicy from {average_options}.'

        pred = to_tensor(pred)
        target = to_tensor(target).to(torch.int64)
        assert pred.size(0) == target.size(0), \
            f"The size of pred ({pred.size(0)}) doesn't match "\
            f'the target ({target.size(0)}).'

        if pred.ndim == 1:
            assert num_classes is not None, \
                'Please specicy the `num_classes` if the `pred` is labels ' \
                'intead of scores.'
            gt_positive = F.one_hot(target.flatten(), num_classes)
            pred_positive = F.one_hot(pred.to(torch.int64), num_classes)
            return _precision_recall_f1_support(pred_positive, gt_positive,
                                                average)
        else:
            # For pred score, calculate on all thresholds.
            num_classes = pred.size(1)
            pred_score, pred_label = torch.topk(pred, k=1)
            pred_score = pred_score.flatten()
            pred_label = pred_label.flatten()

            gt_positive = F.one_hot(target.flatten(), num_classes)

            results = []
            for thr in thrs:
                pred_positive = F.one_hot(pred_label, num_classes)
                if thr is not None:
                    pred_positive[pred_score <= thr] = 0
                results.append(
                    _precision_recall_f1_support(pred_positive, gt_positive,
                                                 average))

            return results