KyanChen's picture
init
f549064
raw
history blame
No virus
23.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from typing import List, Sequence, Tuple, Union
import numpy as np
import torch
from mmengine.structures import InstanceData
from mmengine.utils import digit_version
from six.moves import map, zip
from torch import Tensor
from torch.autograd import Function
from torch.nn import functional as F
from mmdet.structures import SampleList
from mmdet.structures.bbox import BaseBoxes, get_box_type, stack_boxes
from mmdet.structures.mask import BitmapMasks, PolygonMasks
from mmdet.utils import OptInstanceList
class SigmoidGeometricMean(Function):
"""Forward and backward function of geometric mean of two sigmoid
functions.
This implementation with analytical gradient function substitutes
the autograd function of (x.sigmoid() * y.sigmoid()).sqrt(). The
original implementation incurs none during gradient backprapagation
if both x and y are very small values.
"""
@staticmethod
def forward(ctx, x, y):
x_sigmoid = x.sigmoid()
y_sigmoid = y.sigmoid()
z = (x_sigmoid * y_sigmoid).sqrt()
ctx.save_for_backward(x_sigmoid, y_sigmoid, z)
return z
@staticmethod
def backward(ctx, grad_output):
x_sigmoid, y_sigmoid, z = ctx.saved_tensors
grad_x = grad_output * z * (1 - x_sigmoid) / 2
grad_y = grad_output * z * (1 - y_sigmoid) / 2
return grad_x, grad_y
sigmoid_geometric_mean = SigmoidGeometricMean.apply
def interpolate_as(source, target, mode='bilinear', align_corners=False):
"""Interpolate the `source` to the shape of the `target`.
The `source` must be a Tensor, but the `target` can be a Tensor or a
np.ndarray with the shape (..., target_h, target_w).
Args:
source (Tensor): A 3D/4D Tensor with the shape (N, H, W) or
(N, C, H, W).
target (Tensor | np.ndarray): The interpolation target with the shape
(..., target_h, target_w).
mode (str): Algorithm used for interpolation. The options are the
same as those in F.interpolate(). Default: ``'bilinear'``.
align_corners (bool): The same as the argument in F.interpolate().
Returns:
Tensor: The interpolated source Tensor.
"""
assert len(target.shape) >= 2
def _interpolate_as(source, target, mode='bilinear', align_corners=False):
"""Interpolate the `source` (4D) to the shape of the `target`."""
target_h, target_w = target.shape[-2:]
source_h, source_w = source.shape[-2:]
if target_h != source_h or target_w != source_w:
source = F.interpolate(
source,
size=(target_h, target_w),
mode=mode,
align_corners=align_corners)
return source
if len(source.shape) == 3:
source = source[:, None, :, :]
source = _interpolate_as(source, target, mode, align_corners)
return source[:, 0, :, :]
else:
return _interpolate_as(source, target, mode, align_corners)
def unpack_gt_instances(batch_data_samples: SampleList) -> tuple:
"""Unpack ``gt_instances``, ``gt_instances_ignore`` and ``img_metas`` based
on ``batch_data_samples``
Args:
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
tuple:
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
- batch_gt_instances_ignore (list[:obj:`InstanceData`]):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
- batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
"""
batch_gt_instances = []
batch_gt_instances_ignore = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
if 'ignored_instances' in data_sample:
batch_gt_instances_ignore.append(data_sample.ignored_instances)
else:
batch_gt_instances_ignore.append(None)
return batch_gt_instances, batch_gt_instances_ignore, batch_img_metas
def empty_instances(batch_img_metas: List[dict],
device: torch.device,
task_type: str,
instance_results: OptInstanceList = None,
mask_thr_binary: Union[int, float] = 0,
box_type: Union[str, type] = 'hbox',
use_box_type: bool = False,
num_classes: int = 80,
score_per_cls: bool = False) -> List[InstanceData]:
"""Handle predicted instances when RoI is empty.
Note: If ``instance_results`` is not None, it will be modified
in place internally, and then return ``instance_results``
Args:
batch_img_metas (list[dict]): List of image information.
device (torch.device): Device of tensor.
task_type (str): Expected returned task type. it currently
supports bbox and mask.
instance_results (list[:obj:`InstanceData`]): List of instance
results.
mask_thr_binary (int, float): mask binarization threshold.
Defaults to 0.
box_type (str or type): The empty box type. Defaults to `hbox`.
use_box_type (bool): Whether to warp boxes with the box type.
Defaults to False.
num_classes (int): num_classes of bbox_head. Defaults to 80.
score_per_cls (bool): Whether to generate classwise score for
the empty instance. ``score_per_cls`` will be True when the model
needs to produce raw results without nms. Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
"""
assert task_type in ('bbox', 'mask'), 'Only support bbox and mask,' \
f' but got {task_type}'
if instance_results is not None:
assert len(instance_results) == len(batch_img_metas)
results_list = []
for img_id in range(len(batch_img_metas)):
if instance_results is not None:
results = instance_results[img_id]
assert isinstance(results, InstanceData)
else:
results = InstanceData()
if task_type == 'bbox':
_, box_type = get_box_type(box_type)
bboxes = torch.zeros(0, box_type.box_dim, device=device)
if use_box_type:
bboxes = box_type(bboxes, clone=False)
results.bboxes = bboxes
score_shape = (0, num_classes + 1) if score_per_cls else (0, )
results.scores = torch.zeros(score_shape, device=device)
results.labels = torch.zeros((0, ),
device=device,
dtype=torch.long)
else:
# TODO: Handle the case where rescale is false
img_h, img_w = batch_img_metas[img_id]['ori_shape'][:2]
# the type of `im_mask` will be torch.bool or torch.uint8,
# where uint8 if for visualization and debugging.
im_mask = torch.zeros(
0,
img_h,
img_w,
device=device,
dtype=torch.bool if mask_thr_binary >= 0 else torch.uint8)
results.masks = im_mask
results_list.append(results)
return results_list
def multi_apply(func, *args, **kwargs):
"""Apply function to a list of arguments.
Note:
This function applies the ``func`` to multiple inputs and
map the multiple outputs of the ``func`` into different
list. Each list contains the same type of outputs corresponding
to different inputs.
Args:
func (Function): A function that will be applied to a list of
arguments
Returns:
tuple(list): A tuple containing multiple list, each list contains \
a kind of returned results by the function
"""
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
def unmap(data, count, inds, fill=0):
"""Unmap a subset of item (data) back to the original set of items (of size
count)"""
if data.dim() == 1:
ret = data.new_full((count, ), fill)
ret[inds.type(torch.bool)] = data
else:
new_size = (count, ) + data.size()[1:]
ret = data.new_full(new_size, fill)
ret[inds.type(torch.bool), :] = data
return ret
def mask2ndarray(mask):
"""Convert Mask to ndarray..
Args:
mask (:obj:`BitmapMasks` or :obj:`PolygonMasks` or
torch.Tensor or np.ndarray): The mask to be converted.
Returns:
np.ndarray: Ndarray mask of shape (n, h, w) that has been converted
"""
if isinstance(mask, (BitmapMasks, PolygonMasks)):
mask = mask.to_ndarray()
elif isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
elif not isinstance(mask, np.ndarray):
raise TypeError(f'Unsupported {type(mask)} data type')
return mask
def flip_tensor(src_tensor, flip_direction):
"""flip tensor base on flip_direction.
Args:
src_tensor (Tensor): input feature map, shape (B, C, H, W).
flip_direction (str): The flipping direction. Options are
'horizontal', 'vertical', 'diagonal'.
Returns:
out_tensor (Tensor): Flipped tensor.
"""
assert src_tensor.ndim == 4
valid_directions = ['horizontal', 'vertical', 'diagonal']
assert flip_direction in valid_directions
if flip_direction == 'horizontal':
out_tensor = torch.flip(src_tensor, [3])
elif flip_direction == 'vertical':
out_tensor = torch.flip(src_tensor, [2])
else:
out_tensor = torch.flip(src_tensor, [2, 3])
return out_tensor
def select_single_mlvl(mlvl_tensors, batch_id, detach=True):
"""Extract a multi-scale single image tensor from a multi-scale batch
tensor based on batch index.
Note: The default value of detach is True, because the proposal gradient
needs to be detached during the training of the two-stage model. E.g
Cascade Mask R-CNN.
Args:
mlvl_tensors (list[Tensor]): Batch tensor for all scale levels,
each is a 4D-tensor.
batch_id (int): Batch index.
detach (bool): Whether detach gradient. Default True.
Returns:
list[Tensor]: Multi-scale single image tensor.
"""
assert isinstance(mlvl_tensors, (list, tuple))
num_levels = len(mlvl_tensors)
if detach:
mlvl_tensor_list = [
mlvl_tensors[i][batch_id].detach() for i in range(num_levels)
]
else:
mlvl_tensor_list = [
mlvl_tensors[i][batch_id] for i in range(num_levels)
]
return mlvl_tensor_list
def filter_scores_and_topk(scores, score_thr, topk, results=None):
"""Filter results using score threshold and topk candidates.
Args:
scores (Tensor): The scores, shape (num_bboxes, K).
score_thr (float): The score filter threshold.
topk (int): The number of topk candidates.
results (dict or list or Tensor, Optional): The results to
which the filtering rule is to be applied. The shape
of each item is (num_bboxes, N).
Returns:
tuple: Filtered results
- scores (Tensor): The scores after being filtered, \
shape (num_bboxes_filtered, ).
- labels (Tensor): The class labels, shape \
(num_bboxes_filtered, ).
- anchor_idxs (Tensor): The anchor indexes, shape \
(num_bboxes_filtered, ).
- filtered_results (dict or list or Tensor, Optional): \
The filtered results. The shape of each item is \
(num_bboxes_filtered, N).
"""
valid_mask = scores > score_thr
scores = scores[valid_mask]
valid_idxs = torch.nonzero(valid_mask)
num_topk = min(topk, valid_idxs.size(0))
# torch.sort is actually faster than .topk (at least on GPUs)
scores, idxs = scores.sort(descending=True)
scores = scores[:num_topk]
topk_idxs = valid_idxs[idxs[:num_topk]]
keep_idxs, labels = topk_idxs.unbind(dim=1)
filtered_results = None
if results is not None:
if isinstance(results, dict):
filtered_results = {k: v[keep_idxs] for k, v in results.items()}
elif isinstance(results, list):
filtered_results = [result[keep_idxs] for result in results]
elif isinstance(results, torch.Tensor):
filtered_results = results[keep_idxs]
else:
raise NotImplementedError(f'Only supports dict or list or Tensor, '
f'but get {type(results)}.')
return scores, labels, keep_idxs, filtered_results
def center_of_mass(mask, esp=1e-6):
"""Calculate the centroid coordinates of the mask.
Args:
mask (Tensor): The mask to be calculated, shape (h, w).
esp (float): Avoid dividing by zero. Default: 1e-6.
Returns:
tuple[Tensor]: the coordinates of the center point of the mask.
- center_h (Tensor): the center point of the height.
- center_w (Tensor): the center point of the width.
"""
h, w = mask.shape
grid_h = torch.arange(h, device=mask.device)[:, None]
grid_w = torch.arange(w, device=mask.device)
normalizer = mask.sum().float().clamp(min=esp)
center_h = (mask * grid_h).sum() / normalizer
center_w = (mask * grid_w).sum() / normalizer
return center_h, center_w
def generate_coordinate(featmap_sizes, device='cuda'):
"""Generate the coordinate.
Args:
featmap_sizes (tuple): The feature to be calculated,
of shape (N, C, W, H).
device (str): The device where the feature will be put on.
Returns:
coord_feat (Tensor): The coordinate feature, of shape (N, 2, W, H).
"""
x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device)
y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([featmap_sizes[0], 1, -1, -1])
x = x.expand([featmap_sizes[0], 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
return coord_feat
def levels_to_images(mlvl_tensor: List[torch.Tensor]) -> List[torch.Tensor]:
"""Concat multi-level feature maps by image.
[feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
(N, H*W , C), then split the element to N elements with shape (H*W, C), and
concat elements in same image of all level along first dimension.
Args:
mlvl_tensor (list[Tensor]): list of Tensor which collect from
corresponding level. Each element is of shape (N, C, H, W)
Returns:
list[Tensor]: A list that contains N tensors and each tensor is
of shape (num_elements, C)
"""
batch_size = mlvl_tensor[0].size(0)
batch_list = [[] for _ in range(batch_size)]
channels = mlvl_tensor[0].size(1)
for t in mlvl_tensor:
t = t.permute(0, 2, 3, 1)
t = t.view(batch_size, -1, channels).contiguous()
for img in range(batch_size):
batch_list[img].append(t[img])
return [torch.cat(item, 0) for item in batch_list]
def images_to_levels(target, num_levels):
"""Convert targets by image to targets by feature level.
[target_img0, target_img1] -> [target_level0, target_level1, ...]
"""
target = stack_boxes(target, 0)
level_targets = []
start = 0
for n in num_levels:
end = start + n
# level_targets.append(target[:, start:end].squeeze(0))
level_targets.append(target[:, start:end])
start = end
return level_targets
def samplelist_boxtype2tensor(batch_data_samples: SampleList) -> SampleList:
for data_samples in batch_data_samples:
if 'gt_instances' in data_samples:
bboxes = data_samples.gt_instances.get('bboxes', None)
if isinstance(bboxes, BaseBoxes):
data_samples.gt_instances.bboxes = bboxes.tensor
if 'pred_instances' in data_samples:
bboxes = data_samples.pred_instances.get('bboxes', None)
if isinstance(bboxes, BaseBoxes):
data_samples.pred_instances.bboxes = bboxes.tensor
if 'ignored_instances' in data_samples:
bboxes = data_samples.ignored_instances.get('bboxes', None)
if isinstance(bboxes, BaseBoxes):
data_samples.ignored_instances.bboxes = bboxes.tensor
_torch_version_div_indexing = (
'parrots' not in torch.__version__
and digit_version(torch.__version__) >= digit_version('1.8'))
def floordiv(dividend, divisor, rounding_mode='trunc'):
if _torch_version_div_indexing:
return torch.div(dividend, divisor, rounding_mode=rounding_mode)
else:
return dividend // divisor
def _filter_gt_instances_by_score(batch_data_samples: SampleList,
score_thr: float) -> SampleList:
"""Filter ground truth (GT) instances by score.
Args:
batch_data_samples (SampleList): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
score_thr (float): The score filter threshold.
Returns:
SampleList: The Data Samples filtered by score.
"""
for data_samples in batch_data_samples:
assert 'scores' in data_samples.gt_instances, \
'there does not exit scores in instances'
if data_samples.gt_instances.bboxes.shape[0] > 0:
data_samples.gt_instances = data_samples.gt_instances[
data_samples.gt_instances.scores > score_thr]
return batch_data_samples
def _filter_gt_instances_by_size(batch_data_samples: SampleList,
wh_thr: tuple) -> SampleList:
"""Filter ground truth (GT) instances by size.
Args:
batch_data_samples (SampleList): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
wh_thr (tuple): Minimum width and height of bbox.
Returns:
SampleList: The Data Samples filtered by score.
"""
for data_samples in batch_data_samples:
bboxes = data_samples.gt_instances.bboxes
if bboxes.shape[0] > 0:
w = bboxes[:, 2] - bboxes[:, 0]
h = bboxes[:, 3] - bboxes[:, 1]
data_samples.gt_instances = data_samples.gt_instances[
(w > wh_thr[0]) & (h > wh_thr[1])]
return batch_data_samples
def filter_gt_instances(batch_data_samples: SampleList,
score_thr: float = None,
wh_thr: tuple = None):
"""Filter ground truth (GT) instances by score and/or size.
Args:
batch_data_samples (SampleList): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
score_thr (float): The score filter threshold.
wh_thr (tuple): Minimum width and height of bbox.
Returns:
SampleList: The Data Samples filtered by score and/or size.
"""
if score_thr is not None:
batch_data_samples = _filter_gt_instances_by_score(
batch_data_samples, score_thr)
if wh_thr is not None:
batch_data_samples = _filter_gt_instances_by_size(
batch_data_samples, wh_thr)
return batch_data_samples
def rename_loss_dict(prefix: str, losses: dict) -> dict:
"""Rename the key names in loss dict by adding a prefix.
Args:
prefix (str): The prefix for loss components.
losses (dict): A dictionary of loss components.
Returns:
dict: A dictionary of loss components with prefix.
"""
return {prefix + k: v for k, v in losses.items()}
def reweight_loss_dict(losses: dict, weight: float) -> dict:
"""Reweight losses in the dict by weight.
Args:
losses (dict): A dictionary of loss components.
weight (float): Weight for loss components.
Returns:
dict: A dictionary of weighted loss components.
"""
for name, loss in losses.items():
if 'loss' in name:
if isinstance(loss, Sequence):
losses[name] = [item * weight for item in loss]
else:
losses[name] = loss * weight
return losses
def relative_coordinate_maps(
locations: Tensor,
centers: Tensor,
strides: Tensor,
size_of_interest: int,
feat_sizes: Tuple[int],
) -> Tensor:
"""Generate the relative coordinate maps with feat_stride.
Args:
locations (Tensor): The prior location of mask feature map.
It has shape (num_priors, 2).
centers (Tensor): The prior points of a object in
all feature pyramid. It has shape (num_pos, 2)
strides (Tensor): The prior strides of a object in
all feature pyramid. It has shape (num_pos, 1)
size_of_interest (int): The size of the region used in rel coord.
feat_sizes (Tuple[int]): The feature size H and W, which has 2 dims.
Returns:
rel_coord_feat (Tensor): The coordinate feature
of shape (num_pos, 2, H, W).
"""
H, W = feat_sizes
rel_coordinates = centers.reshape(-1, 1, 2) - locations.reshape(1, -1, 2)
rel_coordinates = rel_coordinates.permute(0, 2, 1).float()
rel_coordinates = rel_coordinates / (
strides[:, None, None] * size_of_interest)
return rel_coordinates.reshape(-1, 2, H, W)
def aligned_bilinear(tensor: Tensor, factor: int) -> Tensor:
"""aligned bilinear, used in original implement in CondInst:
https://github.com/aim-uofa/AdelaiDet/blob/\
c0b2092ce72442b0f40972f7c6dda8bb52c46d16/adet/utils/comm.py#L23
"""
assert tensor.dim() == 4
assert factor >= 1
assert int(factor) == factor
if factor == 1:
return tensor
h, w = tensor.size()[2:]
tensor = F.pad(tensor, pad=(0, 1, 0, 1), mode='replicate')
oh = factor * h + 1
ow = factor * w + 1
tensor = F.interpolate(
tensor, size=(oh, ow), mode='bilinear', align_corners=True)
tensor = F.pad(
tensor, pad=(factor // 2, 0, factor // 2, 0), mode='replicate')
return tensor[:, :, :oh - 1, :ow - 1]
def unfold_wo_center(x, kernel_size: int, dilation: int) -> Tensor:
"""unfold_wo_center, used in original implement in BoxInst:
https://github.com/aim-uofa/AdelaiDet/blob/\
4a3a1f7372c35b48ebf5f6adc59f135a0fa28d60/\
adet/modeling/condinst/condinst.py#L53
"""
assert x.dim() == 4
assert kernel_size % 2 == 1
# using SAME padding
padding = (kernel_size + (dilation - 1) * (kernel_size - 1)) // 2
unfolded_x = F.unfold(
x, kernel_size=kernel_size, padding=padding, dilation=dilation)
unfolded_x = unfolded_x.reshape(
x.size(0), x.size(1), -1, x.size(2), x.size(3))
# remove the center pixels
size = kernel_size**2
unfolded_x = torch.cat(
(unfolded_x[:, :, :size // 2], unfolded_x[:, :, size // 2 + 1:]),
dim=2)
return unfolded_x