File size: 23,814 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from typing import List, Sequence, Tuple, Union

import numpy as np
import torch
from mmengine.structures import InstanceData
from mmengine.utils import digit_version
from six.moves import map, zip
from torch import Tensor
from torch.autograd import Function
from torch.nn import functional as F

from mmdet.structures import SampleList
from mmdet.structures.bbox import BaseBoxes, get_box_type, stack_boxes
from mmdet.structures.mask import BitmapMasks, PolygonMasks
from mmdet.utils import OptInstanceList


class SigmoidGeometricMean(Function):
    """Forward and backward function of geometric mean of two sigmoid
    functions.

    This implementation with analytical gradient function substitutes
    the autograd function of (x.sigmoid() * y.sigmoid()).sqrt(). The
    original implementation incurs none during gradient backprapagation
    if both x and y are very small values.
    """

    @staticmethod
    def forward(ctx, x, y):
        x_sigmoid = x.sigmoid()
        y_sigmoid = y.sigmoid()
        z = (x_sigmoid * y_sigmoid).sqrt()
        ctx.save_for_backward(x_sigmoid, y_sigmoid, z)
        return z

    @staticmethod
    def backward(ctx, grad_output):
        x_sigmoid, y_sigmoid, z = ctx.saved_tensors
        grad_x = grad_output * z * (1 - x_sigmoid) / 2
        grad_y = grad_output * z * (1 - y_sigmoid) / 2
        return grad_x, grad_y


sigmoid_geometric_mean = SigmoidGeometricMean.apply


def interpolate_as(source, target, mode='bilinear', align_corners=False):
    """Interpolate the `source` to the shape of the `target`.

    The `source` must be a Tensor, but the `target` can be a Tensor or a
    np.ndarray with the shape (..., target_h, target_w).

    Args:
        source (Tensor): A 3D/4D Tensor with the shape (N, H, W) or
            (N, C, H, W).
        target (Tensor | np.ndarray): The interpolation target with the shape
            (..., target_h, target_w).
        mode (str): Algorithm used for interpolation. The options are the
            same as those in F.interpolate(). Default: ``'bilinear'``.
        align_corners (bool): The same as the argument in F.interpolate().

    Returns:
        Tensor: The interpolated source Tensor.
    """
    assert len(target.shape) >= 2

    def _interpolate_as(source, target, mode='bilinear', align_corners=False):
        """Interpolate the `source` (4D) to the shape of the `target`."""
        target_h, target_w = target.shape[-2:]
        source_h, source_w = source.shape[-2:]
        if target_h != source_h or target_w != source_w:
            source = F.interpolate(
                source,
                size=(target_h, target_w),
                mode=mode,
                align_corners=align_corners)
        return source

    if len(source.shape) == 3:
        source = source[:, None, :, :]
        source = _interpolate_as(source, target, mode, align_corners)
        return source[:, 0, :, :]
    else:
        return _interpolate_as(source, target, mode, align_corners)


def unpack_gt_instances(batch_data_samples: SampleList) -> tuple:
    """Unpack ``gt_instances``, ``gt_instances_ignore`` and ``img_metas`` based
    on ``batch_data_samples``

    Args:
        batch_data_samples (List[:obj:`DetDataSample`]): The Data
            Samples. It usually includes information such as
            `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

    Returns:
        tuple:

            - batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            - batch_gt_instances_ignore (list[:obj:`InstanceData`]):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            - batch_img_metas (list[dict]): Meta information of each image,
                e.g., image size, scaling factor, etc.
    """
    batch_gt_instances = []
    batch_gt_instances_ignore = []
    batch_img_metas = []
    for data_sample in batch_data_samples:
        batch_img_metas.append(data_sample.metainfo)
        batch_gt_instances.append(data_sample.gt_instances)
        if 'ignored_instances' in data_sample:
            batch_gt_instances_ignore.append(data_sample.ignored_instances)
        else:
            batch_gt_instances_ignore.append(None)

    return batch_gt_instances, batch_gt_instances_ignore, batch_img_metas


def empty_instances(batch_img_metas: List[dict],
                    device: torch.device,
                    task_type: str,
                    instance_results: OptInstanceList = None,
                    mask_thr_binary: Union[int, float] = 0,
                    box_type: Union[str, type] = 'hbox',
                    use_box_type: bool = False,
                    num_classes: int = 80,
                    score_per_cls: bool = False) -> List[InstanceData]:
    """Handle predicted instances when RoI is empty.

    Note: If ``instance_results`` is not None, it will be modified
    in place internally, and then return ``instance_results``

    Args:
        batch_img_metas (list[dict]): List of image information.
        device (torch.device): Device of tensor.
        task_type (str): Expected returned task type. it currently
            supports bbox and mask.
        instance_results (list[:obj:`InstanceData`]): List of instance
            results.
        mask_thr_binary (int, float): mask binarization threshold.
            Defaults to 0.
        box_type (str or type): The empty box type. Defaults to `hbox`.
        use_box_type (bool): Whether to warp boxes with the box type.
            Defaults to False.
        num_classes (int): num_classes of bbox_head. Defaults to 80.
        score_per_cls (bool):  Whether to generate classwise score for
            the empty instance. ``score_per_cls`` will be True when the model
            needs to produce raw results without nms. Defaults to False.

    Returns:
        list[:obj:`InstanceData`]: Detection results of each image
    """
    assert task_type in ('bbox', 'mask'), 'Only support bbox and mask,' \
                                          f' but got {task_type}'

    if instance_results is not None:
        assert len(instance_results) == len(batch_img_metas)

    results_list = []
    for img_id in range(len(batch_img_metas)):
        if instance_results is not None:
            results = instance_results[img_id]
            assert isinstance(results, InstanceData)
        else:
            results = InstanceData()

        if task_type == 'bbox':
            _, box_type = get_box_type(box_type)
            bboxes = torch.zeros(0, box_type.box_dim, device=device)
            if use_box_type:
                bboxes = box_type(bboxes, clone=False)
            results.bboxes = bboxes
            score_shape = (0, num_classes + 1) if score_per_cls else (0, )
            results.scores = torch.zeros(score_shape, device=device)
            results.labels = torch.zeros((0, ),
                                         device=device,
                                         dtype=torch.long)
        else:
            # TODO: Handle the case where rescale is false
            img_h, img_w = batch_img_metas[img_id]['ori_shape'][:2]
            # the type of `im_mask` will be torch.bool or torch.uint8,
            # where uint8 if for visualization and debugging.
            im_mask = torch.zeros(
                0,
                img_h,
                img_w,
                device=device,
                dtype=torch.bool if mask_thr_binary >= 0 else torch.uint8)
            results.masks = im_mask
        results_list.append(results)
    return results_list


def multi_apply(func, *args, **kwargs):
    """Apply function to a list of arguments.

    Note:
        This function applies the ``func`` to multiple inputs and
        map the multiple outputs of the ``func`` into different
        list. Each list contains the same type of outputs corresponding
        to different inputs.

    Args:
        func (Function): A function that will be applied to a list of
            arguments

    Returns:
        tuple(list): A tuple containing multiple list, each list contains \
            a kind of returned results by the function
    """
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results)))


def unmap(data, count, inds, fill=0):
    """Unmap a subset of item (data) back to the original set of items (of size
    count)"""
    if data.dim() == 1:
        ret = data.new_full((count, ), fill)
        ret[inds.type(torch.bool)] = data
    else:
        new_size = (count, ) + data.size()[1:]
        ret = data.new_full(new_size, fill)
        ret[inds.type(torch.bool), :] = data
    return ret


def mask2ndarray(mask):
    """Convert Mask to ndarray..

    Args:
        mask (:obj:`BitmapMasks` or :obj:`PolygonMasks` or
        torch.Tensor or np.ndarray): The mask to be converted.

    Returns:
        np.ndarray: Ndarray mask of shape (n, h, w) that has been converted
    """
    if isinstance(mask, (BitmapMasks, PolygonMasks)):
        mask = mask.to_ndarray()
    elif isinstance(mask, torch.Tensor):
        mask = mask.detach().cpu().numpy()
    elif not isinstance(mask, np.ndarray):
        raise TypeError(f'Unsupported {type(mask)} data type')
    return mask


def flip_tensor(src_tensor, flip_direction):
    """flip tensor base on flip_direction.

    Args:
        src_tensor (Tensor): input feature map, shape (B, C, H, W).
        flip_direction (str): The flipping direction. Options are
          'horizontal', 'vertical', 'diagonal'.

    Returns:
        out_tensor (Tensor): Flipped tensor.
    """
    assert src_tensor.ndim == 4
    valid_directions = ['horizontal', 'vertical', 'diagonal']
    assert flip_direction in valid_directions
    if flip_direction == 'horizontal':
        out_tensor = torch.flip(src_tensor, [3])
    elif flip_direction == 'vertical':
        out_tensor = torch.flip(src_tensor, [2])
    else:
        out_tensor = torch.flip(src_tensor, [2, 3])
    return out_tensor


def select_single_mlvl(mlvl_tensors, batch_id, detach=True):
    """Extract a multi-scale single image tensor from a multi-scale batch
    tensor based on batch index.

    Note: The default value of detach is True, because the proposal gradient
    needs to be detached during the training of the two-stage model. E.g
    Cascade Mask R-CNN.

    Args:
        mlvl_tensors (list[Tensor]): Batch tensor for all scale levels,
           each is a 4D-tensor.
        batch_id (int): Batch index.
        detach (bool): Whether detach gradient. Default True.

    Returns:
        list[Tensor]: Multi-scale single image tensor.
    """
    assert isinstance(mlvl_tensors, (list, tuple))
    num_levels = len(mlvl_tensors)

    if detach:
        mlvl_tensor_list = [
            mlvl_tensors[i][batch_id].detach() for i in range(num_levels)
        ]
    else:
        mlvl_tensor_list = [
            mlvl_tensors[i][batch_id] for i in range(num_levels)
        ]
    return mlvl_tensor_list


def filter_scores_and_topk(scores, score_thr, topk, results=None):
    """Filter results using score threshold and topk candidates.

    Args:
        scores (Tensor): The scores, shape (num_bboxes, K).
        score_thr (float): The score filter threshold.
        topk (int): The number of topk candidates.
        results (dict or list or Tensor, Optional): The results to
           which the filtering rule is to be applied. The shape
           of each item is (num_bboxes, N).

    Returns:
        tuple: Filtered results

            - scores (Tensor): The scores after being filtered, \
                shape (num_bboxes_filtered, ).
            - labels (Tensor): The class labels, shape \
                (num_bboxes_filtered, ).
            - anchor_idxs (Tensor): The anchor indexes, shape \
                (num_bboxes_filtered, ).
            - filtered_results (dict or list or Tensor, Optional): \
                The filtered results. The shape of each item is \
                (num_bboxes_filtered, N).
    """
    valid_mask = scores > score_thr
    scores = scores[valid_mask]
    valid_idxs = torch.nonzero(valid_mask)

    num_topk = min(topk, valid_idxs.size(0))
    # torch.sort is actually faster than .topk (at least on GPUs)
    scores, idxs = scores.sort(descending=True)
    scores = scores[:num_topk]
    topk_idxs = valid_idxs[idxs[:num_topk]]
    keep_idxs, labels = topk_idxs.unbind(dim=1)

    filtered_results = None
    if results is not None:
        if isinstance(results, dict):
            filtered_results = {k: v[keep_idxs] for k, v in results.items()}
        elif isinstance(results, list):
            filtered_results = [result[keep_idxs] for result in results]
        elif isinstance(results, torch.Tensor):
            filtered_results = results[keep_idxs]
        else:
            raise NotImplementedError(f'Only supports dict or list or Tensor, '
                                      f'but get {type(results)}.')
    return scores, labels, keep_idxs, filtered_results


def center_of_mass(mask, esp=1e-6):
    """Calculate the centroid coordinates of the mask.

    Args:
        mask (Tensor): The mask to be calculated, shape (h, w).
        esp (float): Avoid dividing by zero. Default: 1e-6.

    Returns:
        tuple[Tensor]: the coordinates of the center point of the mask.

            - center_h (Tensor): the center point of the height.
            - center_w (Tensor): the center point of the width.
    """
    h, w = mask.shape
    grid_h = torch.arange(h, device=mask.device)[:, None]
    grid_w = torch.arange(w, device=mask.device)
    normalizer = mask.sum().float().clamp(min=esp)
    center_h = (mask * grid_h).sum() / normalizer
    center_w = (mask * grid_w).sum() / normalizer
    return center_h, center_w


def generate_coordinate(featmap_sizes, device='cuda'):
    """Generate the coordinate.

    Args:
        featmap_sizes (tuple): The feature to be calculated,
            of shape (N, C, W, H).
        device (str): The device where the feature will be put on.
    Returns:
        coord_feat (Tensor): The coordinate feature, of shape (N, 2, W, H).
    """

    x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device)
    y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device)
    y, x = torch.meshgrid(y_range, x_range)
    y = y.expand([featmap_sizes[0], 1, -1, -1])
    x = x.expand([featmap_sizes[0], 1, -1, -1])
    coord_feat = torch.cat([x, y], 1)

    return coord_feat


def levels_to_images(mlvl_tensor: List[torch.Tensor]) -> List[torch.Tensor]:
    """Concat multi-level feature maps by image.

    [feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
    Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
    (N, H*W , C), then split the element to N elements with shape (H*W, C), and
    concat elements in same image of all level along first dimension.

    Args:
        mlvl_tensor (list[Tensor]): list of Tensor which collect from
            corresponding level. Each element is of shape (N, C, H, W)

    Returns:
        list[Tensor]: A list that contains N tensors and each tensor is
            of shape (num_elements, C)
    """
    batch_size = mlvl_tensor[0].size(0)
    batch_list = [[] for _ in range(batch_size)]
    channels = mlvl_tensor[0].size(1)
    for t in mlvl_tensor:
        t = t.permute(0, 2, 3, 1)
        t = t.view(batch_size, -1, channels).contiguous()
        for img in range(batch_size):
            batch_list[img].append(t[img])
    return [torch.cat(item, 0) for item in batch_list]


def images_to_levels(target, num_levels):
    """Convert targets by image to targets by feature level.

    [target_img0, target_img1] -> [target_level0, target_level1, ...]
    """
    target = stack_boxes(target, 0)
    level_targets = []
    start = 0
    for n in num_levels:
        end = start + n
        # level_targets.append(target[:, start:end].squeeze(0))
        level_targets.append(target[:, start:end])
        start = end
    return level_targets


def samplelist_boxtype2tensor(batch_data_samples: SampleList) -> SampleList:
    for data_samples in batch_data_samples:
        if 'gt_instances' in data_samples:
            bboxes = data_samples.gt_instances.get('bboxes', None)
            if isinstance(bboxes, BaseBoxes):
                data_samples.gt_instances.bboxes = bboxes.tensor
        if 'pred_instances' in data_samples:
            bboxes = data_samples.pred_instances.get('bboxes', None)
            if isinstance(bboxes, BaseBoxes):
                data_samples.pred_instances.bboxes = bboxes.tensor
        if 'ignored_instances' in data_samples:
            bboxes = data_samples.ignored_instances.get('bboxes', None)
            if isinstance(bboxes, BaseBoxes):
                data_samples.ignored_instances.bboxes = bboxes.tensor


_torch_version_div_indexing = (
    'parrots' not in torch.__version__
    and digit_version(torch.__version__) >= digit_version('1.8'))


def floordiv(dividend, divisor, rounding_mode='trunc'):
    if _torch_version_div_indexing:
        return torch.div(dividend, divisor, rounding_mode=rounding_mode)
    else:
        return dividend // divisor


def _filter_gt_instances_by_score(batch_data_samples: SampleList,
                                  score_thr: float) -> SampleList:
    """Filter ground truth (GT) instances by score.

    Args:
        batch_data_samples (SampleList): The Data
            Samples. It usually includes information such as
            `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
        score_thr (float): The score filter threshold.

    Returns:
        SampleList: The Data Samples filtered by score.
    """
    for data_samples in batch_data_samples:
        assert 'scores' in data_samples.gt_instances, \
            'there does not exit scores in instances'
        if data_samples.gt_instances.bboxes.shape[0] > 0:
            data_samples.gt_instances = data_samples.gt_instances[
                data_samples.gt_instances.scores > score_thr]
    return batch_data_samples


def _filter_gt_instances_by_size(batch_data_samples: SampleList,
                                 wh_thr: tuple) -> SampleList:
    """Filter ground truth (GT) instances by size.

    Args:
        batch_data_samples (SampleList): The Data
            Samples. It usually includes information such as
            `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
        wh_thr (tuple):  Minimum width and height of bbox.

    Returns:
        SampleList: The Data Samples filtered by score.
    """
    for data_samples in batch_data_samples:
        bboxes = data_samples.gt_instances.bboxes
        if bboxes.shape[0] > 0:
            w = bboxes[:, 2] - bboxes[:, 0]
            h = bboxes[:, 3] - bboxes[:, 1]
            data_samples.gt_instances = data_samples.gt_instances[
                (w > wh_thr[0]) & (h > wh_thr[1])]
    return batch_data_samples


def filter_gt_instances(batch_data_samples: SampleList,
                        score_thr: float = None,
                        wh_thr: tuple = None):
    """Filter ground truth (GT) instances by score and/or size.

    Args:
        batch_data_samples (SampleList): The Data
            Samples. It usually includes information such as
            `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
        score_thr (float): The score filter threshold.
        wh_thr (tuple):  Minimum width and height of bbox.

    Returns:
        SampleList: The Data Samples filtered by score and/or size.
    """

    if score_thr is not None:
        batch_data_samples = _filter_gt_instances_by_score(
            batch_data_samples, score_thr)
    if wh_thr is not None:
        batch_data_samples = _filter_gt_instances_by_size(
            batch_data_samples, wh_thr)
    return batch_data_samples


def rename_loss_dict(prefix: str, losses: dict) -> dict:
    """Rename the key names in loss dict by adding a prefix.

    Args:
        prefix (str): The prefix for loss components.
        losses (dict):  A dictionary of loss components.

    Returns:
            dict: A dictionary of loss components with prefix.
    """
    return {prefix + k: v for k, v in losses.items()}


def reweight_loss_dict(losses: dict, weight: float) -> dict:
    """Reweight losses in the dict by weight.

    Args:
        losses (dict):  A dictionary of loss components.
        weight (float): Weight for loss components.

    Returns:
            dict: A dictionary of weighted loss components.
    """
    for name, loss in losses.items():
        if 'loss' in name:
            if isinstance(loss, Sequence):
                losses[name] = [item * weight for item in loss]
            else:
                losses[name] = loss * weight
    return losses


def relative_coordinate_maps(
    locations: Tensor,
    centers: Tensor,
    strides: Tensor,
    size_of_interest: int,
    feat_sizes: Tuple[int],
) -> Tensor:
    """Generate the relative coordinate maps with feat_stride.

    Args:
        locations (Tensor): The prior location of mask feature map.
            It has shape (num_priors, 2).
        centers (Tensor): The prior points of a object in
            all feature pyramid. It has shape (num_pos, 2)
        strides (Tensor): The prior strides of a object in
            all feature pyramid. It has shape (num_pos, 1)
        size_of_interest (int): The size of the region used in rel coord.
        feat_sizes (Tuple[int]): The feature size H and W, which has 2 dims.
    Returns:
        rel_coord_feat (Tensor): The coordinate feature
            of shape (num_pos, 2, H, W).
    """

    H, W = feat_sizes
    rel_coordinates = centers.reshape(-1, 1, 2) - locations.reshape(1, -1, 2)
    rel_coordinates = rel_coordinates.permute(0, 2, 1).float()
    rel_coordinates = rel_coordinates / (
        strides[:, None, None] * size_of_interest)
    return rel_coordinates.reshape(-1, 2, H, W)


def aligned_bilinear(tensor: Tensor, factor: int) -> Tensor:
    """aligned bilinear, used in original implement in CondInst:

    https://github.com/aim-uofa/AdelaiDet/blob/\
    c0b2092ce72442b0f40972f7c6dda8bb52c46d16/adet/utils/comm.py#L23
    """

    assert tensor.dim() == 4
    assert factor >= 1
    assert int(factor) == factor

    if factor == 1:
        return tensor

    h, w = tensor.size()[2:]
    tensor = F.pad(tensor, pad=(0, 1, 0, 1), mode='replicate')
    oh = factor * h + 1
    ow = factor * w + 1
    tensor = F.interpolate(
        tensor, size=(oh, ow), mode='bilinear', align_corners=True)
    tensor = F.pad(
        tensor, pad=(factor // 2, 0, factor // 2, 0), mode='replicate')

    return tensor[:, :, :oh - 1, :ow - 1]


def unfold_wo_center(x, kernel_size: int, dilation: int) -> Tensor:
    """unfold_wo_center, used in original implement in BoxInst:

    https://github.com/aim-uofa/AdelaiDet/blob/\
    4a3a1f7372c35b48ebf5f6adc59f135a0fa28d60/\
    adet/modeling/condinst/condinst.py#L53
    """
    assert x.dim() == 4
    assert kernel_size % 2 == 1

    # using SAME padding
    padding = (kernel_size + (dilation - 1) * (kernel_size - 1)) // 2
    unfolded_x = F.unfold(
        x, kernel_size=kernel_size, padding=padding, dilation=dilation)
    unfolded_x = unfolded_x.reshape(
        x.size(0), x.size(1), -1, x.size(2), x.size(3))
    # remove the center pixels
    size = kernel_size**2
    unfolded_x = torch.cat(
        (unfolded_x[:, :, :size // 2], unfolded_x[:, :, size // 2 + 1:]),
        dim=2)

    return unfolded_x