Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmengine.config import ConfigDict | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS, TASK_UTILS | |
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, | |
OptInstanceList) | |
from ..task_modules.samplers import PseudoSampler | |
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply, | |
unmap) | |
from .base_dense_head import BaseDenseHead | |
from .guided_anchor_head import GuidedAnchorHead | |
class SABLRetinaHead(BaseDenseHead): | |
"""Side-Aware Boundary Localization (SABL) for RetinaNet. | |
The anchor generation, assigning and sampling in SABLRetinaHead | |
are the same as GuidedAnchorHead for guided anchoring. | |
Please refer to https://arxiv.org/abs/1912.04260 for more details. | |
Args: | |
num_classes (int): Number of classes. | |
in_channels (int): Number of channels in the input feature map. | |
stacked_convs (int): Number of Convs for classification and | |
regression branches. Defaults to 4. | |
feat_channels (int): Number of hidden channels. Defaults to 256. | |
approx_anchor_generator (:obj:`ConfigType` or dict): Config dict for | |
approx generator. | |
square_anchor_generator (:obj:`ConfigDict` or dict): Config dict for | |
square generator. | |
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
ConvModule. Defaults to None. | |
norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
Norm Layer. Defaults to None. | |
bbox_coder (:obj:`ConfigDict` or dict): Config dict for bbox coder. | |
reg_decoded_bbox (bool): If true, the regression loss would be | |
applied directly on decoded bounding boxes, converting both | |
the predicted boxes and regression targets to absolute | |
coordinates format. Default False. It should be ``True`` when | |
using ``IoULoss``, ``GIoULoss``, or ``DIoULoss`` in the bbox head. | |
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of | |
SABLRetinaHead. | |
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of | |
SABLRetinaHead. | |
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. | |
loss_bbox_cls (:obj:`ConfigDict` or dict): Config of classification | |
loss for bbox branch. | |
loss_bbox_reg (:obj:`ConfigDict` or dict): Config of regression loss | |
for bbox branch. | |
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ | |
dict], optional): Initialization config dict. | |
""" | |
def __init__( | |
self, | |
num_classes: int, | |
in_channels: int, | |
stacked_convs: int = 4, | |
feat_channels: int = 256, | |
approx_anchor_generator: ConfigType = dict( | |
type='AnchorGenerator', | |
octave_base_scale=4, | |
scales_per_octave=3, | |
ratios=[0.5, 1.0, 2.0], | |
strides=[8, 16, 32, 64, 128]), | |
square_anchor_generator: ConfigType = dict( | |
type='AnchorGenerator', | |
ratios=[1.0], | |
scales=[4], | |
strides=[8, 16, 32, 64, 128]), | |
conv_cfg: OptConfigType = None, | |
norm_cfg: OptConfigType = None, | |
bbox_coder: ConfigType = dict( | |
type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), | |
reg_decoded_bbox: bool = False, | |
train_cfg: OptConfigType = None, | |
test_cfg: OptConfigType = None, | |
loss_cls: ConfigType = dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
loss_bbox_cls: ConfigType = dict( | |
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), | |
loss_bbox_reg: ConfigType = dict( | |
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5), | |
init_cfg: MultiConfig = dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.01, | |
override=dict( | |
type='Normal', name='retina_cls', std=0.01, bias_prob=0.01)) | |
) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.num_classes = num_classes | |
self.feat_channels = feat_channels | |
self.num_buckets = bbox_coder['num_buckets'] | |
self.side_num = int(np.ceil(self.num_buckets / 2)) | |
assert (approx_anchor_generator['octave_base_scale'] == | |
square_anchor_generator['scales'][0]) | |
assert (approx_anchor_generator['strides'] == | |
square_anchor_generator['strides']) | |
self.approx_anchor_generator = TASK_UTILS.build( | |
approx_anchor_generator) | |
self.square_anchor_generator = TASK_UTILS.build( | |
square_anchor_generator) | |
self.approxs_per_octave = ( | |
self.approx_anchor_generator.num_base_priors[0]) | |
# one anchor per location | |
self.num_base_priors = self.square_anchor_generator.num_base_priors[0] | |
self.stacked_convs = stacked_convs | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.reg_decoded_bbox = reg_decoded_bbox | |
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) | |
if self.use_sigmoid_cls: | |
self.cls_out_channels = num_classes | |
else: | |
self.cls_out_channels = num_classes + 1 | |
self.bbox_coder = TASK_UTILS.build(bbox_coder) | |
self.loss_cls = MODELS.build(loss_cls) | |
self.loss_bbox_cls = MODELS.build(loss_bbox_cls) | |
self.loss_bbox_reg = MODELS.build(loss_bbox_reg) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
if self.train_cfg: | |
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
# use PseudoSampler when sampling is False | |
if 'sampler' in self.train_cfg: | |
self.sampler = TASK_UTILS.build( | |
self.train_cfg['sampler'], default_args=dict(context=self)) | |
else: | |
self.sampler = PseudoSampler(context=self) | |
self._init_layers() | |
def _init_layers(self) -> None: | |
self.relu = nn.ReLU(inplace=True) | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.reg_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.retina_cls = nn.Conv2d( | |
self.feat_channels, self.cls_out_channels, 3, padding=1) | |
self.retina_bbox_reg = nn.Conv2d( | |
self.feat_channels, self.side_num * 4, 3, padding=1) | |
self.retina_bbox_cls = nn.Conv2d( | |
self.feat_channels, self.side_num * 4, 3, padding=1) | |
def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]: | |
cls_feat = x | |
reg_feat = x | |
for cls_conv in self.cls_convs: | |
cls_feat = cls_conv(cls_feat) | |
for reg_conv in self.reg_convs: | |
reg_feat = reg_conv(reg_feat) | |
cls_score = self.retina_cls(cls_feat) | |
bbox_cls_pred = self.retina_bbox_cls(reg_feat) | |
bbox_reg_pred = self.retina_bbox_reg(reg_feat) | |
bbox_pred = (bbox_cls_pred, bbox_reg_pred) | |
return cls_score, bbox_pred | |
def forward(self, feats: List[Tensor]) -> Tuple[List[Tensor]]: | |
return multi_apply(self.forward_single, feats) | |
def get_anchors( | |
self, | |
featmap_sizes: List[tuple], | |
img_metas: List[dict], | |
device: Union[torch.device, str] = 'cuda' | |
) -> Tuple[List[List[Tensor]], List[List[Tensor]]]: | |
"""Get squares according to feature map sizes and guided anchors. | |
Args: | |
featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
img_metas (list[dict]): Image meta info. | |
device (torch.device | str): device for returned tensors | |
Returns: | |
tuple: square approxs of each image | |
""" | |
num_imgs = len(img_metas) | |
# since feature map sizes of all images are the same, we only compute | |
# squares for one time | |
multi_level_squares = self.square_anchor_generator.grid_priors( | |
featmap_sizes, device=device) | |
squares_list = [multi_level_squares for _ in range(num_imgs)] | |
return squares_list | |
def get_targets(self, | |
approx_list: List[List[Tensor]], | |
inside_flag_list: List[List[Tensor]], | |
square_list: List[List[Tensor]], | |
batch_gt_instances: InstanceList, | |
batch_img_metas, | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs=True) -> tuple: | |
"""Compute bucketing targets. | |
Args: | |
approx_list (list[list[Tensor]]): Multi level approxs of each | |
image. | |
inside_flag_list (list[list[Tensor]]): Multi level inside flags of | |
each image. | |
square_list (list[list[Tensor]]): Multi level squares of each | |
image. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. Defaults to True. | |
Returns: | |
tuple: Returns a tuple containing learning targets. | |
- labels_list (list[Tensor]): Labels of each level. | |
- label_weights_list (list[Tensor]): Label weights of each level. | |
- bbox_cls_targets_list (list[Tensor]): BBox cls targets of \ | |
each level. | |
- bbox_cls_weights_list (list[Tensor]): BBox cls weights of \ | |
each level. | |
- bbox_reg_targets_list (list[Tensor]): BBox reg targets of \ | |
each level. | |
- bbox_reg_weights_list (list[Tensor]): BBox reg weights of \ | |
each level. | |
- num_total_pos (int): Number of positive samples in all images. | |
- num_total_neg (int): Number of negative samples in all images. | |
""" | |
num_imgs = len(batch_img_metas) | |
assert len(approx_list) == len(inside_flag_list) == len( | |
square_list) == num_imgs | |
# anchor number of multi levels | |
num_level_squares = [squares.size(0) for squares in square_list[0]] | |
# concat all level anchors and flags to a single tensor | |
inside_flag_flat_list = [] | |
approx_flat_list = [] | |
square_flat_list = [] | |
for i in range(num_imgs): | |
assert len(square_list[i]) == len(inside_flag_list[i]) | |
inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) | |
approx_flat_list.append(torch.cat(approx_list[i])) | |
square_flat_list.append(torch.cat(square_list[i])) | |
# compute targets for each image | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None for _ in range(num_imgs)] | |
(all_labels, all_label_weights, all_bbox_cls_targets, | |
all_bbox_cls_weights, all_bbox_reg_targets, all_bbox_reg_weights, | |
pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply( | |
self._get_targets_single, | |
approx_flat_list, | |
inside_flag_flat_list, | |
square_flat_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs) | |
# sampled anchors of all images | |
avg_factor = sum( | |
[results.avg_factor for results in sampling_results_list]) | |
# split targets to a list w.r.t. multiple levels | |
labels_list = images_to_levels(all_labels, num_level_squares) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_squares) | |
bbox_cls_targets_list = images_to_levels(all_bbox_cls_targets, | |
num_level_squares) | |
bbox_cls_weights_list = images_to_levels(all_bbox_cls_weights, | |
num_level_squares) | |
bbox_reg_targets_list = images_to_levels(all_bbox_reg_targets, | |
num_level_squares) | |
bbox_reg_weights_list = images_to_levels(all_bbox_reg_weights, | |
num_level_squares) | |
return (labels_list, label_weights_list, bbox_cls_targets_list, | |
bbox_cls_weights_list, bbox_reg_targets_list, | |
bbox_reg_weights_list, avg_factor) | |
def _get_targets_single(self, | |
flat_approxs: Tensor, | |
inside_flags: Tensor, | |
flat_squares: Tensor, | |
gt_instances: InstanceData, | |
img_meta: dict, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute regression and classification targets for anchors in a | |
single image. | |
Args: | |
flat_approxs (Tensor): flat approxs of a single image, | |
shape (n, 4) | |
inside_flags (Tensor): inside flags of a single image, | |
shape (n, ). | |
flat_squares (Tensor): flat squares of a single image, | |
shape (approxs_per_octave * n, 4) | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
img_meta (dict): Meta information for current image. | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. Defaults to True. | |
Returns: | |
tuple: | |
- labels_list (Tensor): Labels in a single image. | |
- label_weights (Tensor): Label weights in a single image. | |
- bbox_cls_targets (Tensor): BBox cls targets in a single image. | |
- bbox_cls_weights (Tensor): BBox cls weights in a single image. | |
- bbox_reg_targets (Tensor): BBox reg targets in a single image. | |
- bbox_reg_weights (Tensor): BBox reg weights in a single image. | |
- num_total_pos (int): Number of positive samples in a single \ | |
image. | |
- num_total_neg (int): Number of negative samples in a single \ | |
image. | |
- sampling_result (:obj:`SamplingResult`): Sampling result object. | |
""" | |
if not inside_flags.any(): | |
raise ValueError( | |
'There is no valid anchor inside the image boundary. Please ' | |
'check the image size and anchor sizes, or set ' | |
'``allowed_border`` to -1 to skip the condition.') | |
# assign gt and sample anchors | |
num_square = flat_squares.size(0) | |
approxs = flat_approxs.view(num_square, self.approxs_per_octave, 4) | |
approxs = approxs[inside_flags, ...] | |
squares = flat_squares[inside_flags, :] | |
pred_instances = InstanceData() | |
pred_instances.priors = squares | |
pred_instances.approxs = approxs | |
assign_result = self.assigner.assign(pred_instances, gt_instances, | |
gt_instances_ignore) | |
sampling_result = self.sampler.sample(assign_result, pred_instances, | |
gt_instances) | |
num_valid_squares = squares.shape[0] | |
bbox_cls_targets = squares.new_zeros( | |
(num_valid_squares, self.side_num * 4)) | |
bbox_cls_weights = squares.new_zeros( | |
(num_valid_squares, self.side_num * 4)) | |
bbox_reg_targets = squares.new_zeros( | |
(num_valid_squares, self.side_num * 4)) | |
bbox_reg_weights = squares.new_zeros( | |
(num_valid_squares, self.side_num * 4)) | |
labels = squares.new_full((num_valid_squares, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = squares.new_zeros(num_valid_squares, dtype=torch.float) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
(pos_bbox_reg_targets, pos_bbox_reg_weights, pos_bbox_cls_targets, | |
pos_bbox_cls_weights) = self.bbox_coder.encode( | |
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) | |
bbox_cls_targets[pos_inds, :] = pos_bbox_cls_targets | |
bbox_reg_targets[pos_inds, :] = pos_bbox_reg_targets | |
bbox_cls_weights[pos_inds, :] = pos_bbox_cls_weights | |
bbox_reg_weights[pos_inds, :] = pos_bbox_reg_weights | |
labels[pos_inds] = sampling_result.pos_gt_labels | |
if self.train_cfg['pos_weight'] <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_squares.size(0) | |
labels = unmap( | |
labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_cls_targets = unmap(bbox_cls_targets, num_total_anchors, | |
inside_flags) | |
bbox_cls_weights = unmap(bbox_cls_weights, num_total_anchors, | |
inside_flags) | |
bbox_reg_targets = unmap(bbox_reg_targets, num_total_anchors, | |
inside_flags) | |
bbox_reg_weights = unmap(bbox_reg_weights, num_total_anchors, | |
inside_flags) | |
return (labels, label_weights, bbox_cls_targets, bbox_cls_weights, | |
bbox_reg_targets, bbox_reg_weights, pos_inds, neg_inds, | |
sampling_result) | |
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor, | |
labels: Tensor, label_weights: Tensor, | |
bbox_cls_targets: Tensor, bbox_cls_weights: Tensor, | |
bbox_reg_targets: Tensor, bbox_reg_weights: Tensor, | |
avg_factor: float) -> Tuple[Tensor]: | |
"""Calculate the loss of a single scale level based on the features | |
extracted by the detection head. | |
Args: | |
cls_score (Tensor): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W). | |
bbox_pred (Tensor): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
labels (Tensor): Labels in a single image. | |
label_weights (Tensor): Label weights in a single level. | |
bbox_cls_targets (Tensor): BBox cls targets in a single level. | |
bbox_cls_weights (Tensor): BBox cls weights in a single level. | |
bbox_reg_targets (Tensor): BBox reg targets in a single level. | |
bbox_reg_weights (Tensor): BBox reg weights in a single level. | |
avg_factor (int): Average factor that is used to average the loss. | |
Returns: | |
tuple: loss components. | |
""" | |
# classification loss | |
labels = labels.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
cls_score = cls_score.permute(0, 2, 3, | |
1).reshape(-1, self.cls_out_channels) | |
loss_cls = self.loss_cls( | |
cls_score, labels, label_weights, avg_factor=avg_factor) | |
# regression loss | |
bbox_cls_targets = bbox_cls_targets.reshape(-1, self.side_num * 4) | |
bbox_cls_weights = bbox_cls_weights.reshape(-1, self.side_num * 4) | |
bbox_reg_targets = bbox_reg_targets.reshape(-1, self.side_num * 4) | |
bbox_reg_weights = bbox_reg_weights.reshape(-1, self.side_num * 4) | |
(bbox_cls_pred, bbox_reg_pred) = bbox_pred | |
bbox_cls_pred = bbox_cls_pred.permute(0, 2, 3, 1).reshape( | |
-1, self.side_num * 4) | |
bbox_reg_pred = bbox_reg_pred.permute(0, 2, 3, 1).reshape( | |
-1, self.side_num * 4) | |
loss_bbox_cls = self.loss_bbox_cls( | |
bbox_cls_pred, | |
bbox_cls_targets.long(), | |
bbox_cls_weights, | |
avg_factor=avg_factor * 4 * self.side_num) | |
loss_bbox_reg = self.loss_bbox_reg( | |
bbox_reg_pred, | |
bbox_reg_targets, | |
bbox_reg_weights, | |
avg_factor=avg_factor * 4 * self.bbox_coder.offset_topk) | |
return loss_cls, loss_bbox_cls, loss_bbox_reg | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
has shape (N, num_anchors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.approx_anchor_generator.num_levels | |
device = cls_scores[0].device | |
# get sampled approxes | |
approxs_list, inside_flag_list = GuidedAnchorHead.get_sampled_approxs( | |
self, featmap_sizes, batch_img_metas, device=device) | |
square_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
cls_reg_targets = self.get_targets( | |
approxs_list, | |
inside_flag_list, | |
square_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(labels_list, label_weights_list, bbox_cls_targets_list, | |
bbox_cls_weights_list, bbox_reg_targets_list, bbox_reg_weights_list, | |
avg_factor) = cls_reg_targets | |
losses_cls, losses_bbox_cls, losses_bbox_reg = multi_apply( | |
self.loss_by_feat_single, | |
cls_scores, | |
bbox_preds, | |
labels_list, | |
label_weights_list, | |
bbox_cls_targets_list, | |
bbox_cls_weights_list, | |
bbox_reg_targets_list, | |
bbox_reg_weights_list, | |
avg_factor=avg_factor) | |
return dict( | |
loss_cls=losses_cls, | |
loss_bbox_cls=losses_bbox_cls, | |
loss_bbox_reg=losses_bbox_reg) | |
def predict_by_feat(self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
batch_img_metas: List[dict], | |
cfg: Optional[ConfigDict] = None, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceList: | |
"""Transform a batch of output features extracted from the head into | |
bbox results. | |
Note: When score_factors is not None, the cls_scores are | |
usually multiplied by it then obtain the real score used in NMS, | |
such as CenterNess in FCOS, IoU branch in ATSS. | |
Args: | |
cls_scores (list[Tensor]): Classification scores for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for all | |
scale levels, each is a 4D-tensor, has shape | |
(batch_size, num_priors * 4, H, W). | |
batch_img_metas (list[dict], Optional): Batch image meta info. | |
cfg (:obj:`ConfigDict`, optional): Test / postprocessing | |
configuration, if None, test_cfg would be used. | |
Defaults to None. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
with_nms (bool): If True, do nms before return boxes. | |
Defaults to True. | |
Returns: | |
list[:obj:`InstanceData`]: Object detection results of each image | |
after the post process. Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
assert len(cls_scores) == len(bbox_preds) | |
num_levels = len(cls_scores) | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
device = cls_scores[0].device | |
mlvl_anchors = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
result_list = [] | |
for img_id in range(len(batch_img_metas)): | |
cls_score_list = [ | |
cls_scores[i][img_id].detach() for i in range(num_levels) | |
] | |
bbox_cls_pred_list = [ | |
bbox_preds[i][0][img_id].detach() for i in range(num_levels) | |
] | |
bbox_reg_pred_list = [ | |
bbox_preds[i][1][img_id].detach() for i in range(num_levels) | |
] | |
proposals = self._predict_by_feat_single( | |
cls_scores=cls_score_list, | |
bbox_cls_preds=bbox_cls_pred_list, | |
bbox_reg_preds=bbox_reg_pred_list, | |
mlvl_anchors=mlvl_anchors[img_id], | |
img_meta=batch_img_metas[img_id], | |
cfg=cfg, | |
rescale=rescale, | |
with_nms=with_nms) | |
result_list.append(proposals) | |
return result_list | |
def _predict_by_feat_single(self, | |
cls_scores: List[Tensor], | |
bbox_cls_preds: List[Tensor], | |
bbox_reg_preds: List[Tensor], | |
mlvl_anchors: List[Tensor], | |
img_meta: dict, | |
cfg: ConfigDict, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceData: | |
cfg = self.test_cfg if cfg is None else cfg | |
nms_pre = cfg.get('nms_pre', -1) | |
mlvl_bboxes = [] | |
mlvl_scores = [] | |
mlvl_confids = [] | |
mlvl_labels = [] | |
assert len(cls_scores) == len(bbox_cls_preds) == len( | |
bbox_reg_preds) == len(mlvl_anchors) | |
for cls_score, bbox_cls_pred, bbox_reg_pred, anchors in zip( | |
cls_scores, bbox_cls_preds, bbox_reg_preds, mlvl_anchors): | |
assert cls_score.size()[-2:] == bbox_cls_pred.size( | |
)[-2:] == bbox_reg_pred.size()[-2::] | |
cls_score = cls_score.permute(1, 2, | |
0).reshape(-1, self.cls_out_channels) | |
if self.use_sigmoid_cls: | |
scores = cls_score.sigmoid() | |
else: | |
scores = cls_score.softmax(-1)[:, :-1] | |
bbox_cls_pred = bbox_cls_pred.permute(1, 2, 0).reshape( | |
-1, self.side_num * 4) | |
bbox_reg_pred = bbox_reg_pred.permute(1, 2, 0).reshape( | |
-1, self.side_num * 4) | |
# After https://github.com/open-mmlab/mmdetection/pull/6268/, | |
# this operation keeps fewer bboxes under the same `nms_pre`. | |
# There is no difference in performance for most models. If you | |
# find a slight drop in performance, you can set a larger | |
# `nms_pre` than before. | |
results = filter_scores_and_topk( | |
scores, cfg.score_thr, nms_pre, | |
dict( | |
anchors=anchors, | |
bbox_cls_pred=bbox_cls_pred, | |
bbox_reg_pred=bbox_reg_pred)) | |
scores, labels, _, filtered_results = results | |
anchors = filtered_results['anchors'] | |
bbox_cls_pred = filtered_results['bbox_cls_pred'] | |
bbox_reg_pred = filtered_results['bbox_reg_pred'] | |
bbox_preds = [ | |
bbox_cls_pred.contiguous(), | |
bbox_reg_pred.contiguous() | |
] | |
bboxes, confids = self.bbox_coder.decode( | |
anchors.contiguous(), | |
bbox_preds, | |
max_shape=img_meta['img_shape']) | |
mlvl_bboxes.append(bboxes) | |
mlvl_scores.append(scores) | |
mlvl_confids.append(confids) | |
mlvl_labels.append(labels) | |
results = InstanceData() | |
results.bboxes = torch.cat(mlvl_bboxes) | |
results.scores = torch.cat(mlvl_scores) | |
results.score_factors = torch.cat(mlvl_confids) | |
results.labels = torch.cat(mlvl_labels) | |
return self._bbox_post_process( | |
results=results, | |
cfg=cfg, | |
rescale=rescale, | |
with_nms=with_nms, | |
img_meta=img_meta) | |