Spaces:
Runtime error
Runtime error
File size: 31,550 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType,
OptInstanceList)
from ..task_modules.samplers import PseudoSampler
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
unmap)
from .base_dense_head import BaseDenseHead
from .guided_anchor_head import GuidedAnchorHead
@MODELS.register_module()
class SABLRetinaHead(BaseDenseHead):
"""Side-Aware Boundary Localization (SABL) for RetinaNet.
The anchor generation, assigning and sampling in SABLRetinaHead
are the same as GuidedAnchorHead for guided anchoring.
Please refer to https://arxiv.org/abs/1912.04260 for more details.
Args:
num_classes (int): Number of classes.
in_channels (int): Number of channels in the input feature map.
stacked_convs (int): Number of Convs for classification and
regression branches. Defaults to 4.
feat_channels (int): Number of hidden channels. Defaults to 256.
approx_anchor_generator (:obj:`ConfigType` or dict): Config dict for
approx generator.
square_anchor_generator (:obj:`ConfigDict` or dict): Config dict for
square generator.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
ConvModule. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
Norm Layer. Defaults to None.
bbox_coder (:obj:`ConfigDict` or dict): Config dict for bbox coder.
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Default False. It should be ``True`` when
using ``IoULoss``, ``GIoULoss``, or ``DIoULoss`` in the bbox head.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
SABLRetinaHead.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
SABLRetinaHead.
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox_cls (:obj:`ConfigDict` or dict): Config of classification
loss for bbox branch.
loss_bbox_reg (:obj:`ConfigDict` or dict): Config of regression loss
for bbox branch.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], optional): Initialization config dict.
"""
def __init__(
self,
num_classes: int,
in_channels: int,
stacked_convs: int = 4,
feat_channels: int = 256,
approx_anchor_generator: ConfigType = dict(
type='AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
square_anchor_generator: ConfigType = dict(
type='AnchorGenerator',
ratios=[1.0],
scales=[4],
strides=[8, 16, 32, 64, 128]),
conv_cfg: OptConfigType = None,
norm_cfg: OptConfigType = None,
bbox_coder: ConfigType = dict(
type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0),
reg_decoded_bbox: bool = False,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
loss_cls: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_cls: ConfigType = dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
loss_bbox_reg: ConfigType = dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5),
init_cfg: MultiConfig = dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal', name='retina_cls', std=0.01, bias_prob=0.01))
) -> None:
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.num_classes = num_classes
self.feat_channels = feat_channels
self.num_buckets = bbox_coder['num_buckets']
self.side_num = int(np.ceil(self.num_buckets / 2))
assert (approx_anchor_generator['octave_base_scale'] ==
square_anchor_generator['scales'][0])
assert (approx_anchor_generator['strides'] ==
square_anchor_generator['strides'])
self.approx_anchor_generator = TASK_UTILS.build(
approx_anchor_generator)
self.square_anchor_generator = TASK_UTILS.build(
square_anchor_generator)
self.approxs_per_octave = (
self.approx_anchor_generator.num_base_priors[0])
# one anchor per location
self.num_base_priors = self.square_anchor_generator.num_base_priors[0]
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.reg_decoded_bbox = reg_decoded_bbox
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
if self.use_sigmoid_cls:
self.cls_out_channels = num_classes
else:
self.cls_out_channels = num_classes + 1
self.bbox_coder = TASK_UTILS.build(bbox_coder)
self.loss_cls = MODELS.build(loss_cls)
self.loss_bbox_cls = MODELS.build(loss_bbox_cls)
self.loss_bbox_reg = MODELS.build(loss_bbox_reg)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
# use PseudoSampler when sampling is False
if 'sampler' in self.train_cfg:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
self._init_layers()
def _init_layers(self) -> None:
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.retina_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
self.retina_bbox_reg = nn.Conv2d(
self.feat_channels, self.side_num * 4, 3, padding=1)
self.retina_bbox_cls = nn.Conv2d(
self.feat_channels, self.side_num * 4, 3, padding=1)
def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]:
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
cls_score = self.retina_cls(cls_feat)
bbox_cls_pred = self.retina_bbox_cls(reg_feat)
bbox_reg_pred = self.retina_bbox_reg(reg_feat)
bbox_pred = (bbox_cls_pred, bbox_reg_pred)
return cls_score, bbox_pred
def forward(self, feats: List[Tensor]) -> Tuple[List[Tensor]]:
return multi_apply(self.forward_single, feats)
def get_anchors(
self,
featmap_sizes: List[tuple],
img_metas: List[dict],
device: Union[torch.device, str] = 'cuda'
) -> Tuple[List[List[Tensor]], List[List[Tensor]]]:
"""Get squares according to feature map sizes and guided anchors.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
img_metas (list[dict]): Image meta info.
device (torch.device | str): device for returned tensors
Returns:
tuple: square approxs of each image
"""
num_imgs = len(img_metas)
# since feature map sizes of all images are the same, we only compute
# squares for one time
multi_level_squares = self.square_anchor_generator.grid_priors(
featmap_sizes, device=device)
squares_list = [multi_level_squares for _ in range(num_imgs)]
return squares_list
def get_targets(self,
approx_list: List[List[Tensor]],
inside_flag_list: List[List[Tensor]],
square_list: List[List[Tensor]],
batch_gt_instances: InstanceList,
batch_img_metas,
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs=True) -> tuple:
"""Compute bucketing targets.
Args:
approx_list (list[list[Tensor]]): Multi level approxs of each
image.
inside_flag_list (list[list[Tensor]]): Multi level inside flags of
each image.
square_list (list[list[Tensor]]): Multi level squares of each
image.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple: Returns a tuple containing learning targets.
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each level.
- bbox_cls_targets_list (list[Tensor]): BBox cls targets of \
each level.
- bbox_cls_weights_list (list[Tensor]): BBox cls weights of \
each level.
- bbox_reg_targets_list (list[Tensor]): BBox reg targets of \
each level.
- bbox_reg_weights_list (list[Tensor]): BBox reg weights of \
each level.
- num_total_pos (int): Number of positive samples in all images.
- num_total_neg (int): Number of negative samples in all images.
"""
num_imgs = len(batch_img_metas)
assert len(approx_list) == len(inside_flag_list) == len(
square_list) == num_imgs
# anchor number of multi levels
num_level_squares = [squares.size(0) for squares in square_list[0]]
# concat all level anchors and flags to a single tensor
inside_flag_flat_list = []
approx_flat_list = []
square_flat_list = []
for i in range(num_imgs):
assert len(square_list[i]) == len(inside_flag_list[i])
inside_flag_flat_list.append(torch.cat(inside_flag_list[i]))
approx_flat_list.append(torch.cat(approx_list[i]))
square_flat_list.append(torch.cat(square_list[i]))
# compute targets for each image
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None for _ in range(num_imgs)]
(all_labels, all_label_weights, all_bbox_cls_targets,
all_bbox_cls_weights, all_bbox_reg_targets, all_bbox_reg_weights,
pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply(
self._get_targets_single,
approx_flat_list,
inside_flag_flat_list,
square_flat_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs)
# sampled anchors of all images
avg_factor = sum(
[results.avg_factor for results in sampling_results_list])
# split targets to a list w.r.t. multiple levels
labels_list = images_to_levels(all_labels, num_level_squares)
label_weights_list = images_to_levels(all_label_weights,
num_level_squares)
bbox_cls_targets_list = images_to_levels(all_bbox_cls_targets,
num_level_squares)
bbox_cls_weights_list = images_to_levels(all_bbox_cls_weights,
num_level_squares)
bbox_reg_targets_list = images_to_levels(all_bbox_reg_targets,
num_level_squares)
bbox_reg_weights_list = images_to_levels(all_bbox_reg_weights,
num_level_squares)
return (labels_list, label_weights_list, bbox_cls_targets_list,
bbox_cls_weights_list, bbox_reg_targets_list,
bbox_reg_weights_list, avg_factor)
def _get_targets_single(self,
flat_approxs: Tensor,
inside_flags: Tensor,
flat_squares: Tensor,
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs: bool = True) -> tuple:
"""Compute regression and classification targets for anchors in a
single image.
Args:
flat_approxs (Tensor): flat approxs of a single image,
shape (n, 4)
inside_flags (Tensor): inside flags of a single image,
shape (n, ).
flat_squares (Tensor): flat squares of a single image,
shape (approxs_per_octave * n, 4)
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple:
- labels_list (Tensor): Labels in a single image.
- label_weights (Tensor): Label weights in a single image.
- bbox_cls_targets (Tensor): BBox cls targets in a single image.
- bbox_cls_weights (Tensor): BBox cls weights in a single image.
- bbox_reg_targets (Tensor): BBox reg targets in a single image.
- bbox_reg_weights (Tensor): BBox reg weights in a single image.
- num_total_pos (int): Number of positive samples in a single \
image.
- num_total_neg (int): Number of negative samples in a single \
image.
- sampling_result (:obj:`SamplingResult`): Sampling result object.
"""
if not inside_flags.any():
raise ValueError(
'There is no valid anchor inside the image boundary. Please '
'check the image size and anchor sizes, or set '
'``allowed_border`` to -1 to skip the condition.')
# assign gt and sample anchors
num_square = flat_squares.size(0)
approxs = flat_approxs.view(num_square, self.approxs_per_octave, 4)
approxs = approxs[inside_flags, ...]
squares = flat_squares[inside_flags, :]
pred_instances = InstanceData()
pred_instances.priors = squares
pred_instances.approxs = approxs
assign_result = self.assigner.assign(pred_instances, gt_instances,
gt_instances_ignore)
sampling_result = self.sampler.sample(assign_result, pred_instances,
gt_instances)
num_valid_squares = squares.shape[0]
bbox_cls_targets = squares.new_zeros(
(num_valid_squares, self.side_num * 4))
bbox_cls_weights = squares.new_zeros(
(num_valid_squares, self.side_num * 4))
bbox_reg_targets = squares.new_zeros(
(num_valid_squares, self.side_num * 4))
bbox_reg_weights = squares.new_zeros(
(num_valid_squares, self.side_num * 4))
labels = squares.new_full((num_valid_squares, ),
self.num_classes,
dtype=torch.long)
label_weights = squares.new_zeros(num_valid_squares, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
(pos_bbox_reg_targets, pos_bbox_reg_weights, pos_bbox_cls_targets,
pos_bbox_cls_weights) = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
bbox_cls_targets[pos_inds, :] = pos_bbox_cls_targets
bbox_reg_targets[pos_inds, :] = pos_bbox_reg_targets
bbox_cls_weights[pos_inds, :] = pos_bbox_cls_weights
bbox_reg_weights[pos_inds, :] = pos_bbox_reg_weights
labels[pos_inds] = sampling_result.pos_gt_labels
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_squares.size(0)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_cls_targets = unmap(bbox_cls_targets, num_total_anchors,
inside_flags)
bbox_cls_weights = unmap(bbox_cls_weights, num_total_anchors,
inside_flags)
bbox_reg_targets = unmap(bbox_reg_targets, num_total_anchors,
inside_flags)
bbox_reg_weights = unmap(bbox_reg_weights, num_total_anchors,
inside_flags)
return (labels, label_weights, bbox_cls_targets, bbox_cls_weights,
bbox_reg_targets, bbox_reg_weights, pos_inds, neg_inds,
sampling_result)
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
labels: Tensor, label_weights: Tensor,
bbox_cls_targets: Tensor, bbox_cls_weights: Tensor,
bbox_reg_targets: Tensor, bbox_reg_weights: Tensor,
avg_factor: float) -> Tuple[Tensor]:
"""Calculate the loss of a single scale level based on the features
extracted by the detection head.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W).
labels (Tensor): Labels in a single image.
label_weights (Tensor): Label weights in a single level.
bbox_cls_targets (Tensor): BBox cls targets in a single level.
bbox_cls_weights (Tensor): BBox cls weights in a single level.
bbox_reg_targets (Tensor): BBox reg targets in a single level.
bbox_reg_weights (Tensor): BBox reg weights in a single level.
avg_factor (int): Average factor that is used to average the loss.
Returns:
tuple: loss components.
"""
# classification loss
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=avg_factor)
# regression loss
bbox_cls_targets = bbox_cls_targets.reshape(-1, self.side_num * 4)
bbox_cls_weights = bbox_cls_weights.reshape(-1, self.side_num * 4)
bbox_reg_targets = bbox_reg_targets.reshape(-1, self.side_num * 4)
bbox_reg_weights = bbox_reg_weights.reshape(-1, self.side_num * 4)
(bbox_cls_pred, bbox_reg_pred) = bbox_pred
bbox_cls_pred = bbox_cls_pred.permute(0, 2, 3, 1).reshape(
-1, self.side_num * 4)
bbox_reg_pred = bbox_reg_pred.permute(0, 2, 3, 1).reshape(
-1, self.side_num * 4)
loss_bbox_cls = self.loss_bbox_cls(
bbox_cls_pred,
bbox_cls_targets.long(),
bbox_cls_weights,
avg_factor=avg_factor * 4 * self.side_num)
loss_bbox_reg = self.loss_bbox_reg(
bbox_reg_pred,
bbox_reg_targets,
bbox_reg_weights,
avg_factor=avg_factor * 4 * self.bbox_coder.offset_topk)
return loss_cls, loss_bbox_cls, loss_bbox_reg
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.approx_anchor_generator.num_levels
device = cls_scores[0].device
# get sampled approxes
approxs_list, inside_flag_list = GuidedAnchorHead.get_sampled_approxs(
self, featmap_sizes, batch_img_metas, device=device)
square_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = self.get_targets(
approxs_list,
inside_flag_list,
square_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(labels_list, label_weights_list, bbox_cls_targets_list,
bbox_cls_weights_list, bbox_reg_targets_list, bbox_reg_weights_list,
avg_factor) = cls_reg_targets
losses_cls, losses_bbox_cls, losses_bbox_reg = multi_apply(
self.loss_by_feat_single,
cls_scores,
bbox_preds,
labels_list,
label_weights_list,
bbox_cls_targets_list,
bbox_cls_weights_list,
bbox_reg_targets_list,
bbox_reg_weights_list,
avg_factor=avg_factor)
return dict(
loss_cls=losses_cls,
loss_bbox_cls=losses_bbox_cls,
loss_bbox_reg=losses_bbox_reg)
def predict_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_img_metas: List[dict],
cfg: Optional[ConfigDict] = None,
rescale: bool = False,
with_nms: bool = True) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Note: When score_factors is not None, the cls_scores are
usually multiplied by it then obtain the real score used in NMS,
such as CenterNess in FCOS, IoU branch in ATSS.
Args:
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
batch_img_metas (list[dict], Optional): Batch image meta info.
cfg (:obj:`ConfigDict`, optional): Test / postprocessing
configuration, if None, test_cfg would be used.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(cls_scores) == len(bbox_preds)
num_levels = len(cls_scores)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
device = cls_scores[0].device
mlvl_anchors = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
result_list = []
for img_id in range(len(batch_img_metas)):
cls_score_list = [
cls_scores[i][img_id].detach() for i in range(num_levels)
]
bbox_cls_pred_list = [
bbox_preds[i][0][img_id].detach() for i in range(num_levels)
]
bbox_reg_pred_list = [
bbox_preds[i][1][img_id].detach() for i in range(num_levels)
]
proposals = self._predict_by_feat_single(
cls_scores=cls_score_list,
bbox_cls_preds=bbox_cls_pred_list,
bbox_reg_preds=bbox_reg_pred_list,
mlvl_anchors=mlvl_anchors[img_id],
img_meta=batch_img_metas[img_id],
cfg=cfg,
rescale=rescale,
with_nms=with_nms)
result_list.append(proposals)
return result_list
def _predict_by_feat_single(self,
cls_scores: List[Tensor],
bbox_cls_preds: List[Tensor],
bbox_reg_preds: List[Tensor],
mlvl_anchors: List[Tensor],
img_meta: dict,
cfg: ConfigDict,
rescale: bool = False,
with_nms: bool = True) -> InstanceData:
cfg = self.test_cfg if cfg is None else cfg
nms_pre = cfg.get('nms_pre', -1)
mlvl_bboxes = []
mlvl_scores = []
mlvl_confids = []
mlvl_labels = []
assert len(cls_scores) == len(bbox_cls_preds) == len(
bbox_reg_preds) == len(mlvl_anchors)
for cls_score, bbox_cls_pred, bbox_reg_pred, anchors in zip(
cls_scores, bbox_cls_preds, bbox_reg_preds, mlvl_anchors):
assert cls_score.size()[-2:] == bbox_cls_pred.size(
)[-2:] == bbox_reg_pred.size()[-2::]
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
scores = cls_score.softmax(-1)[:, :-1]
bbox_cls_pred = bbox_cls_pred.permute(1, 2, 0).reshape(
-1, self.side_num * 4)
bbox_reg_pred = bbox_reg_pred.permute(1, 2, 0).reshape(
-1, self.side_num * 4)
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
results = filter_scores_and_topk(
scores, cfg.score_thr, nms_pre,
dict(
anchors=anchors,
bbox_cls_pred=bbox_cls_pred,
bbox_reg_pred=bbox_reg_pred))
scores, labels, _, filtered_results = results
anchors = filtered_results['anchors']
bbox_cls_pred = filtered_results['bbox_cls_pred']
bbox_reg_pred = filtered_results['bbox_reg_pred']
bbox_preds = [
bbox_cls_pred.contiguous(),
bbox_reg_pred.contiguous()
]
bboxes, confids = self.bbox_coder.decode(
anchors.contiguous(),
bbox_preds,
max_shape=img_meta['img_shape'])
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_confids.append(confids)
mlvl_labels.append(labels)
results = InstanceData()
results.bboxes = torch.cat(mlvl_bboxes)
results.scores = torch.cat(mlvl_scores)
results.score_factors = torch.cat(mlvl_confids)
results.labels = torch.cat(mlvl_labels)
return self._bbox_post_process(
results=results,
cfg=cfg,
rescale=rescale,
with_nms=with_nms,
img_meta=img_meta)
|