KyanChen's picture
init
f549064
raw
history blame
No virus
23 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import torch
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from ..utils import multi_apply
from .deformable_detr_head import DeformableDETRHead
@MODELS.register_module()
class DINOHead(DeformableDETRHead):
r"""Head of the DINO: DETR with Improved DeNoising Anchor Boxes
for End-to-End Object Detection
Code is modified from the `official github repo
<https://github.com/IDEA-Research/DINO>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2203.03605>`_ .
"""
def loss(self, hidden_states: Tensor, references: List[Tensor],
enc_outputs_class: Tensor, enc_outputs_coord: Tensor,
batch_data_samples: SampleList, dn_meta: Dict[str, int]) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries_total,
dim), where `num_queries_total` is the sum of
`num_denoising_queries` and `num_matching_queries` when
`self.training` is `True`, else `num_matching_queries`.
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries_total, 4) and each `inter_reference` has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
enc_outputs_class (Tensor): The score of each point on encode
feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_outputs_coord (Tensor): The proposal generate from the
encode feature map, has shape (bs, num_feat_points, 4) with the
last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
dict: A dictionary of loss components.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states, references)
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord,
batch_gt_instances, batch_img_metas, dn_meta)
losses = self.loss_by_feat(*loss_inputs)
return losses
def loss_by_feat(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
enc_cls_scores: Tensor,
enc_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
dn_meta: Dict[str, int],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels), where
`num_queries_total` is the sum of `num_denoising_queries`
and `num_matching_queries`.
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and has shape (num_decoder_layers, bs,
num_queries_total, 4).
enc_cls_scores (Tensor): The score of each point on encode
feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_bbox_preds (Tensor): The proposal generate from the encode
feature map, has shape (bs, num_feat_points, 4) with the last
dimension arranged as (cx, cy, w, h).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
# extract denoising and matching part of outputs
(all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \
self.split_outputs(
all_layers_cls_scores, all_layers_bbox_preds, dn_meta)
loss_dict = super(DeformableDETRHead, self).loss_by_feat(
all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
batch_gt_instances, batch_img_metas, batch_gt_instances_ignore)
# NOTE DETRHead.loss_by_feat but not DeformableDETRHead.loss_by_feat
# is called, because the encoder loss calculations are different
# between DINO and DeformableDETR.
# loss of proposal generated from encode feature map.
if enc_cls_scores is not None:
# NOTE The enc_loss calculation of the DINO is
# different from that of Deformable DETR.
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
self.loss_by_feat_single(
enc_cls_scores, enc_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas)
loss_dict['enc_loss_cls'] = enc_loss_cls
loss_dict['enc_loss_bbox'] = enc_losses_bbox
loss_dict['enc_loss_iou'] = enc_losses_iou
if all_layers_denoising_cls_scores is not None:
# calculate denoising loss from all decoder layers
dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn(
all_layers_denoising_cls_scores,
all_layers_denoising_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
dn_meta=dn_meta)
# collate denoising loss
loss_dict['dn_loss_cls'] = dn_losses_cls[-1]
loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1]
loss_dict['dn_loss_iou'] = dn_losses_iou[-1]
for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \
enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1],
dn_losses_iou[:-1])):
loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i
loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i
return loss_dict
def loss_dn(self, all_layers_denoising_cls_scores: Tensor,
all_layers_denoising_bbox_preds: Tensor,
batch_gt_instances: InstanceList, batch_img_metas: List[dict],
dn_meta: Dict[str, int]) -> Tuple[List[Tensor]]:
"""Calculate denoising loss.
Args:
all_layers_denoising_cls_scores (Tensor): Classification scores of
all decoder layers in denoising part, has shape (
num_decoder_layers, bs, num_denoising_queries,
cls_out_channels).
all_layers_denoising_bbox_preds (Tensor): Regression outputs of all
decoder layers in denoising part. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and has shape
(num_decoder_layers, bs, num_denoising_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
Tuple[List[Tensor]]: The loss_dn_cls, loss_dn_bbox, and loss_dn_iou
of each decoder layers.
"""
return multi_apply(
self._loss_dn_single,
all_layers_denoising_cls_scores,
all_layers_denoising_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
dn_meta=dn_meta)
def _loss_dn_single(self, dn_cls_scores: Tensor, dn_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
dn_meta: Dict[str, int]) -> Tuple[Tensor]:
"""Denoising loss for outputs from a single decoder layer.
Args:
dn_cls_scores (Tensor): Classification scores of a single decoder
layer in denoising part, has shape (bs, num_denoising_queries,
cls_out_channels).
dn_bbox_preds (Tensor): Regression outputs of a single decoder
layer in denoising part. Each is a 4D-tensor with normalized
coordinate format (cx, cy, w, h) and has shape
(bs, num_denoising_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
cls_reg_targets = self.get_dn_targets(batch_gt_instances,
batch_img_metas, dn_meta)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.cat(labels_list, 0)
label_weights = torch.cat(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# classification loss
cls_scores = dn_cls_scores.reshape(-1, self.cls_out_channels)
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = \
num_total_pos * 1.0 + num_total_neg * self.bg_cls_weight
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
if len(cls_scores) > 0:
loss_cls = self.loss_cls(
cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
else:
loss_cls = torch.zeros(
1, dtype=cls_scores.dtype, device=cls_scores.device)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# construct factors used for rescale bboxes
factors = []
for img_meta, bbox_pred in zip(batch_img_metas, dn_bbox_preds):
img_h, img_w = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0).repeat(
bbox_pred.size(0), 1)
factors.append(factor)
factors = torch.cat(factors)
# DETR regress the relative position of boxes (cxcywh) in the image,
# thus the learning target is normalized by the image size. So here
# we need to re-scale them for calculating IoU loss
bbox_preds = dn_bbox_preds.reshape(-1, 4)
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
# regression IoU loss, defaultly GIoU loss
loss_iou = self.loss_iou(
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
# regression L1 loss
loss_bbox = self.loss_bbox(
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
return loss_cls, loss_bbox, loss_iou
def get_dn_targets(self, batch_gt_instances: InstanceList,
batch_img_metas: dict, dn_meta: Dict[str,
int]) -> tuple:
"""Get targets in denoising part for a batch of images.
Args:
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
tuple: a tuple containing the following targets.
- labels_list (list[Tensor]): Labels for all images.
- label_weights_list (list[Tensor]): Label weights for all images.
- bbox_targets_list (list[Tensor]): BBox targets for all images.
- bbox_weights_list (list[Tensor]): BBox weights for all images.
- num_total_pos (int): Number of positive samples in all images.
- num_total_neg (int): Number of negative samples in all images.
"""
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
pos_inds_list, neg_inds_list) = multi_apply(
self._get_dn_targets_single,
batch_gt_instances,
batch_img_metas,
dn_meta=dn_meta)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
return (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg)
def _get_dn_targets_single(self, gt_instances: InstanceData,
img_meta: dict, dn_meta: Dict[str,
int]) -> tuple:
"""Get targets in denoising part for one image.
Args:
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for one image.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
tuple[Tensor]: a tuple containing the following for one image.
- labels (Tensor): Labels of each image.
- label_weights (Tensor]): Label weights of each image.
- bbox_targets (Tensor): BBox targets of each image.
- bbox_weights (Tensor): BBox weights of each image.
- pos_inds (Tensor): Sampled positive indices for each image.
- neg_inds (Tensor): Sampled negative indices for each image.
"""
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels
num_groups = dn_meta['num_denoising_groups']
num_denoising_queries = dn_meta['num_denoising_queries']
num_queries_each_group = int(num_denoising_queries / num_groups)
device = gt_bboxes.device
if len(gt_labels) > 0:
t = torch.arange(len(gt_labels), dtype=torch.long, device=device)
t = t.unsqueeze(0).repeat(num_groups, 1)
pos_assigned_gt_inds = t.flatten()
pos_inds = torch.arange(
num_groups, dtype=torch.long, device=device)
pos_inds = pos_inds.unsqueeze(1) * num_queries_each_group + t
pos_inds = pos_inds.flatten()
else:
pos_inds = pos_assigned_gt_inds = \
gt_bboxes.new_tensor([], dtype=torch.long)
neg_inds = pos_inds + num_queries_each_group // 2
# label targets
labels = gt_bboxes.new_full((num_denoising_queries, ),
self.num_classes,
dtype=torch.long)
labels[pos_inds] = gt_labels[pos_assigned_gt_inds]
label_weights = gt_bboxes.new_ones(num_denoising_queries)
# bbox targets
bbox_targets = torch.zeros(num_denoising_queries, 4, device=device)
bbox_weights = torch.zeros(num_denoising_queries, 4, device=device)
bbox_weights[pos_inds] = 1.0
img_h, img_w = img_meta['img_shape']
# DETR regress the relative position of boxes (cxcywh) in the image.
# Thus the learning target should be normalized by the image size, also
# the box format should be converted from defaultly x1y1x2y2 to cxcywh.
factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0)
gt_bboxes_normalized = gt_bboxes / factor
gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized)
bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1])
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds)
@staticmethod
def split_outputs(all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
dn_meta: Dict[str, int]) -> Tuple[Tensor]:
"""Split outputs of the denoising part and the matching part.
For the total outputs of `num_queries_total` length, the former
`num_denoising_queries` outputs are from denoising queries, and
the rest `num_matching_queries` ones are from matching queries,
where `num_queries_total` is the sum of `num_denoising_queries` and
`num_matching_queries`.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels).
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and has shape (num_decoder_layers, bs,
num_queries_total, 4).
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'.
Returns:
Tuple[Tensor]: a tuple containing the following outputs.
- all_layers_matching_cls_scores (Tensor): Classification scores
of all decoder layers in matching part, has shape
(num_decoder_layers, bs, num_matching_queries, cls_out_channels).
- all_layers_matching_bbox_preds (Tensor): Regression outputs of
all decoder layers in matching part. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and has shape
(num_decoder_layers, bs, num_matching_queries, 4).
- all_layers_denoising_cls_scores (Tensor): Classification scores
of all decoder layers in denoising part, has shape
(num_decoder_layers, bs, num_denoising_queries,
cls_out_channels).
- all_layers_denoising_bbox_preds (Tensor): Regression outputs of
all decoder layers in denoising part. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and has shape
(num_decoder_layers, bs, num_denoising_queries, 4).
"""
num_denoising_queries = dn_meta['num_denoising_queries']
if dn_meta is not None:
all_layers_denoising_cls_scores = \
all_layers_cls_scores[:, :, : num_denoising_queries, :]
all_layers_denoising_bbox_preds = \
all_layers_bbox_preds[:, :, : num_denoising_queries, :]
all_layers_matching_cls_scores = \
all_layers_cls_scores[:, :, num_denoising_queries:, :]
all_layers_matching_bbox_preds = \
all_layers_bbox_preds[:, :, num_denoising_queries:, :]
else:
all_layers_denoising_cls_scores = None
all_layers_denoising_bbox_preds = None
all_layers_matching_cls_scores = all_layers_cls_scores
all_layers_matching_bbox_preds = all_layers_bbox_preds
return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
all_layers_denoising_cls_scores,
all_layers_denoising_bbox_preds)