File size: 23,047 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple

import torch
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from ..utils import multi_apply
from .deformable_detr_head import DeformableDETRHead


@MODELS.register_module()
class DINOHead(DeformableDETRHead):
    r"""Head of the DINO: DETR with Improved DeNoising Anchor Boxes
    for End-to-End Object Detection

    Code is modified from the `official github repo
    <https://github.com/IDEA-Research/DINO>`_.

    More details can be found in the `paper
    <https://arxiv.org/abs/2203.03605>`_ .
    """

    def loss(self, hidden_states: Tensor, references: List[Tensor],
             enc_outputs_class: Tensor, enc_outputs_coord: Tensor,
             batch_data_samples: SampleList, dn_meta: Dict[str, int]) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the queries of the upstream network.

        Args:
            hidden_states (Tensor): Hidden states output from each decoder
                layer, has shape (num_decoder_layers, bs, num_queries_total,
                dim), where `num_queries_total` is the sum of
                `num_denoising_queries` and `num_matching_queries` when
                `self.training` is `True`, else `num_matching_queries`.
            references (list[Tensor]): List of the reference from the decoder.
                The first reference is the `init_reference` (initial) and the
                other num_decoder_layers(6) references are `inter_references`
                (intermediate). The `init_reference` has shape (bs,
                num_queries_total, 4) and each `inter_reference` has shape
                (bs, num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h).
            enc_outputs_class (Tensor): The score of each point on encode
                feature map, has shape (bs, num_feat_points, cls_out_channels).
            enc_outputs_coord (Tensor): The proposal generate from the
                encode feature map, has shape (bs, num_feat_points, 4) with the
                last dimension arranged as (cx, cy, w, h).
            batch_data_samples (list[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            dn_meta (Dict[str, int]): The dictionary saves information about
              group collation, including 'num_denoising_queries' and
              'num_denoising_groups'. It will be used for split outputs of
              denoising and matching parts and loss calculation.

        Returns:
            dict: A dictionary of loss components.
        """
        batch_gt_instances = []
        batch_img_metas = []
        for data_sample in batch_data_samples:
            batch_img_metas.append(data_sample.metainfo)
            batch_gt_instances.append(data_sample.gt_instances)

        outs = self(hidden_states, references)
        loss_inputs = outs + (enc_outputs_class, enc_outputs_coord,
                              batch_gt_instances, batch_img_metas, dn_meta)
        losses = self.loss_by_feat(*loss_inputs)
        return losses

    def loss_by_feat(
        self,
        all_layers_cls_scores: Tensor,
        all_layers_bbox_preds: Tensor,
        enc_cls_scores: Tensor,
        enc_bbox_preds: Tensor,
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        dn_meta: Dict[str, int],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Loss function.

        Args:
            all_layers_cls_scores (Tensor): Classification scores of all
                decoder layers, has shape (num_decoder_layers, bs,
                num_queries_total, cls_out_channels), where
                `num_queries_total` is the sum of `num_denoising_queries`
                and `num_matching_queries`.
            all_layers_bbox_preds (Tensor): Regression outputs of all decoder
                layers. Each is a 4D-tensor with normalized coordinate format
                (cx, cy, w, h) and has shape (num_decoder_layers, bs,
                num_queries_total, 4).
            enc_cls_scores (Tensor): The score of each point on encode
                feature map, has shape (bs, num_feat_points, cls_out_channels).
            enc_bbox_preds (Tensor): The proposal generate from the encode
                feature map, has shape (bs, num_feat_points, 4) with the last
                dimension arranged as (cx, cy, w, h).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            dn_meta (Dict[str, int]): The dictionary saves information about
                group collation, including 'num_denoising_queries' and
                'num_denoising_groups'. It will be used for split outputs of
                denoising and matching parts and loss calculation.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        # extract denoising and matching part of outputs
        (all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
         all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \
            self.split_outputs(
                all_layers_cls_scores, all_layers_bbox_preds, dn_meta)

        loss_dict = super(DeformableDETRHead, self).loss_by_feat(
            all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
            batch_gt_instances, batch_img_metas, batch_gt_instances_ignore)
        # NOTE DETRHead.loss_by_feat but not DeformableDETRHead.loss_by_feat
        # is called, because the encoder loss calculations are different
        # between DINO and DeformableDETR.

        # loss of proposal generated from encode feature map.
        if enc_cls_scores is not None:
            # NOTE The enc_loss calculation of the DINO is
            # different from that of Deformable DETR.
            enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
                self.loss_by_feat_single(
                    enc_cls_scores, enc_bbox_preds,
                    batch_gt_instances=batch_gt_instances,
                    batch_img_metas=batch_img_metas)
            loss_dict['enc_loss_cls'] = enc_loss_cls
            loss_dict['enc_loss_bbox'] = enc_losses_bbox
            loss_dict['enc_loss_iou'] = enc_losses_iou

        if all_layers_denoising_cls_scores is not None:
            # calculate denoising loss from all decoder layers
            dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn(
                all_layers_denoising_cls_scores,
                all_layers_denoising_bbox_preds,
                batch_gt_instances=batch_gt_instances,
                batch_img_metas=batch_img_metas,
                dn_meta=dn_meta)
            # collate denoising loss
            loss_dict['dn_loss_cls'] = dn_losses_cls[-1]
            loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1]
            loss_dict['dn_loss_iou'] = dn_losses_iou[-1]
            for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \
                    enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1],
                                  dn_losses_iou[:-1])):
                loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i
                loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i
                loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i
        return loss_dict

    def loss_dn(self, all_layers_denoising_cls_scores: Tensor,
                all_layers_denoising_bbox_preds: Tensor,
                batch_gt_instances: InstanceList, batch_img_metas: List[dict],
                dn_meta: Dict[str, int]) -> Tuple[List[Tensor]]:
        """Calculate denoising loss.

        Args:
            all_layers_denoising_cls_scores (Tensor): Classification scores of
                all decoder layers in denoising part, has shape (
                num_decoder_layers, bs, num_denoising_queries,
                cls_out_channels).
            all_layers_denoising_bbox_preds (Tensor): Regression outputs of all
                decoder layers in denoising part. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and has shape
                (num_decoder_layers, bs, num_denoising_queries, 4).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            dn_meta (Dict[str, int]): The dictionary saves information about
              group collation, including 'num_denoising_queries' and
              'num_denoising_groups'. It will be used for split outputs of
              denoising and matching parts and loss calculation.

        Returns:
            Tuple[List[Tensor]]: The loss_dn_cls, loss_dn_bbox, and loss_dn_iou
            of each decoder layers.
        """
        return multi_apply(
            self._loss_dn_single,
            all_layers_denoising_cls_scores,
            all_layers_denoising_bbox_preds,
            batch_gt_instances=batch_gt_instances,
            batch_img_metas=batch_img_metas,
            dn_meta=dn_meta)

    def _loss_dn_single(self, dn_cls_scores: Tensor, dn_bbox_preds: Tensor,
                        batch_gt_instances: InstanceList,
                        batch_img_metas: List[dict],
                        dn_meta: Dict[str, int]) -> Tuple[Tensor]:
        """Denoising loss for outputs from a single decoder layer.

        Args:
            dn_cls_scores (Tensor): Classification scores of a single decoder
                layer in denoising part, has shape (bs, num_denoising_queries,
                cls_out_channels).
            dn_bbox_preds (Tensor): Regression outputs of a single decoder
                layer in denoising part. Each is a 4D-tensor with normalized
                coordinate format (cx, cy, w, h) and has shape
                (bs, num_denoising_queries, 4).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            dn_meta (Dict[str, int]): The dictionary saves information about
              group collation, including 'num_denoising_queries' and
              'num_denoising_groups'. It will be used for split outputs of
              denoising and matching parts and loss calculation.

        Returns:
            Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
            `loss_iou`.
        """
        cls_reg_targets = self.get_dn_targets(batch_gt_instances,
                                              batch_img_metas, dn_meta)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        labels = torch.cat(labels_list, 0)
        label_weights = torch.cat(label_weights_list, 0)
        bbox_targets = torch.cat(bbox_targets_list, 0)
        bbox_weights = torch.cat(bbox_weights_list, 0)

        # classification loss
        cls_scores = dn_cls_scores.reshape(-1, self.cls_out_channels)
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = \
            num_total_pos * 1.0 + num_total_neg * self.bg_cls_weight
        if self.sync_cls_avg_factor:
            cls_avg_factor = reduce_mean(
                cls_scores.new_tensor([cls_avg_factor]))
        cls_avg_factor = max(cls_avg_factor, 1)

        if len(cls_scores) > 0:
            loss_cls = self.loss_cls(
                cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
        else:
            loss_cls = torch.zeros(
                1, dtype=cls_scores.dtype, device=cls_scores.device)

        # Compute the average number of gt boxes across all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()

        # construct factors used for rescale bboxes
        factors = []
        for img_meta, bbox_pred in zip(batch_img_metas, dn_bbox_preds):
            img_h, img_w = img_meta['img_shape']
            factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                           img_h]).unsqueeze(0).repeat(
                                               bbox_pred.size(0), 1)
            factors.append(factor)
        factors = torch.cat(factors)

        # DETR regress the relative position of boxes (cxcywh) in the image,
        # thus the learning target is normalized by the image size. So here
        # we need to re-scale them for calculating IoU loss
        bbox_preds = dn_bbox_preds.reshape(-1, 4)
        bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
        bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors

        # regression IoU loss, defaultly GIoU loss
        loss_iou = self.loss_iou(
            bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)

        # regression L1 loss
        loss_bbox = self.loss_bbox(
            bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
        return loss_cls, loss_bbox, loss_iou

    def get_dn_targets(self, batch_gt_instances: InstanceList,
                       batch_img_metas: dict, dn_meta: Dict[str,
                                                            int]) -> tuple:
        """Get targets in denoising part for a batch of images.

        Args:
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            dn_meta (Dict[str, int]): The dictionary saves information about
              group collation, including 'num_denoising_queries' and
              'num_denoising_groups'. It will be used for split outputs of
              denoising and matching parts and loss calculation.

        Returns:
            tuple: a tuple containing the following targets.

            - labels_list (list[Tensor]): Labels for all images.
            - label_weights_list (list[Tensor]): Label weights for all images.
            - bbox_targets_list (list[Tensor]): BBox targets for all images.
            - bbox_weights_list (list[Tensor]): BBox weights for all images.
            - num_total_pos (int): Number of positive samples in all images.
            - num_total_neg (int): Number of negative samples in all images.
        """
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         pos_inds_list, neg_inds_list) = multi_apply(
             self._get_dn_targets_single,
             batch_gt_instances,
             batch_img_metas,
             dn_meta=dn_meta)
        num_total_pos = sum((inds.numel() for inds in pos_inds_list))
        num_total_neg = sum((inds.numel() for inds in neg_inds_list))
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def _get_dn_targets_single(self, gt_instances: InstanceData,
                               img_meta: dict, dn_meta: Dict[str,
                                                             int]) -> tuple:
        """Get targets in denoising part for one image.

        Args:
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes`` and ``labels``
                attributes.
            img_meta (dict): Meta information for one image.
            dn_meta (Dict[str, int]): The dictionary saves information about
              group collation, including 'num_denoising_queries' and
              'num_denoising_groups'. It will be used for split outputs of
              denoising and matching parts and loss calculation.

        Returns:
            tuple[Tensor]: a tuple containing the following for one image.

            - labels (Tensor): Labels of each image.
            - label_weights (Tensor]): Label weights of each image.
            - bbox_targets (Tensor): BBox targets of each image.
            - bbox_weights (Tensor): BBox weights of each image.
            - pos_inds (Tensor): Sampled positive indices for each image.
            - neg_inds (Tensor): Sampled negative indices for each image.
        """
        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels
        num_groups = dn_meta['num_denoising_groups']
        num_denoising_queries = dn_meta['num_denoising_queries']
        num_queries_each_group = int(num_denoising_queries / num_groups)
        device = gt_bboxes.device

        if len(gt_labels) > 0:
            t = torch.arange(len(gt_labels), dtype=torch.long, device=device)
            t = t.unsqueeze(0).repeat(num_groups, 1)
            pos_assigned_gt_inds = t.flatten()
            pos_inds = torch.arange(
                num_groups, dtype=torch.long, device=device)
            pos_inds = pos_inds.unsqueeze(1) * num_queries_each_group + t
            pos_inds = pos_inds.flatten()
        else:
            pos_inds = pos_assigned_gt_inds = \
                gt_bboxes.new_tensor([], dtype=torch.long)

        neg_inds = pos_inds + num_queries_each_group // 2

        # label targets
        labels = gt_bboxes.new_full((num_denoising_queries, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[pos_assigned_gt_inds]
        label_weights = gt_bboxes.new_ones(num_denoising_queries)

        # bbox targets
        bbox_targets = torch.zeros(num_denoising_queries, 4, device=device)
        bbox_weights = torch.zeros(num_denoising_queries, 4, device=device)
        bbox_weights[pos_inds] = 1.0
        img_h, img_w = img_meta['img_shape']

        # DETR regress the relative position of boxes (cxcywh) in the image.
        # Thus the learning target should be normalized by the image size, also
        # the box format should be converted from defaultly x1y1x2y2 to cxcywh.
        factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)
        gt_bboxes_normalized = gt_bboxes / factor
        gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized)
        bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1])

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    @staticmethod
    def split_outputs(all_layers_cls_scores: Tensor,
                      all_layers_bbox_preds: Tensor,
                      dn_meta: Dict[str, int]) -> Tuple[Tensor]:
        """Split outputs of the denoising part and the matching part.

        For the total outputs of `num_queries_total` length, the former
        `num_denoising_queries` outputs are from denoising queries, and
        the rest `num_matching_queries` ones are from matching queries,
        where `num_queries_total` is the sum of `num_denoising_queries` and
        `num_matching_queries`.

        Args:
            all_layers_cls_scores (Tensor): Classification scores of all
                decoder layers, has shape (num_decoder_layers, bs,
                num_queries_total, cls_out_channels).
            all_layers_bbox_preds (Tensor): Regression outputs of all decoder
                layers. Each is a 4D-tensor with normalized coordinate format
                (cx, cy, w, h) and has shape (num_decoder_layers, bs,
                num_queries_total, 4).
            dn_meta (Dict[str, int]): The dictionary saves information about
              group collation, including 'num_denoising_queries' and
              'num_denoising_groups'.

        Returns:
            Tuple[Tensor]: a tuple containing the following outputs.

            - all_layers_matching_cls_scores (Tensor): Classification scores
              of all decoder layers in matching part, has shape
              (num_decoder_layers, bs, num_matching_queries, cls_out_channels).
            - all_layers_matching_bbox_preds (Tensor): Regression outputs of
              all decoder layers in matching part. Each is a 4D-tensor with
              normalized coordinate format (cx, cy, w, h) and has shape
              (num_decoder_layers, bs, num_matching_queries, 4).
            - all_layers_denoising_cls_scores (Tensor): Classification scores
              of all decoder layers in denoising part, has shape
              (num_decoder_layers, bs, num_denoising_queries,
              cls_out_channels).
            - all_layers_denoising_bbox_preds (Tensor): Regression outputs of
              all decoder layers in denoising part. Each is a 4D-tensor with
              normalized coordinate format (cx, cy, w, h) and has shape
              (num_decoder_layers, bs, num_denoising_queries, 4).
        """
        num_denoising_queries = dn_meta['num_denoising_queries']
        if dn_meta is not None:
            all_layers_denoising_cls_scores = \
                all_layers_cls_scores[:, :, : num_denoising_queries, :]
            all_layers_denoising_bbox_preds = \
                all_layers_bbox_preds[:, :, : num_denoising_queries, :]
            all_layers_matching_cls_scores = \
                all_layers_cls_scores[:, :, num_denoising_queries:, :]
            all_layers_matching_bbox_preds = \
                all_layers_bbox_preds[:, :, num_denoising_queries:, :]
        else:
            all_layers_denoising_cls_scores = None
            all_layers_denoising_bbox_preds = None
            all_layers_matching_cls_scores = all_layers_cls_scores
            all_layers_matching_bbox_preds = all_layers_bbox_preds
        return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
                all_layers_denoising_cls_scores,
                all_layers_denoising_bbox_preds)