Samuel Schmidt
Update: Ownership dataset changed
2e67a00
from colordescriptor import ColorDescriptor
from CLIP import CLIPImageEncoder
from LBP import LBPImageEncoder
from helper import chi2_distance, euclidean_distance, merge_features
import gradio as gr
import os
import cv2
import numpy as np
from datasets import *
dataset = load_dataset("nielsr/CelebA-faces", download_mode='force_redownload')
dataset.cleanup_cache_files()
candidate_subset = dataset["train"].select(range(500)) # This is a small CBIR app! :D
def index_dataset(dataset):
print(dataset)
print("LBP Embeddings")
lbp_model = LBPImageEncoder(8,2)
dataset_with_embeddings = dataset.map(lambda row: {'lbp_embeddings': lbp_model.describe(row["image"])})
print("Color Embeddings")
cd = ColorDescriptor((8, 12, 3))
dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'color_embeddings': cd.describe(row["image"])})
print("CLIP Embeddings")
clip_model = CLIPImageEncoder()
dataset_with_embeddings = dataset_with_embeddings.map(clip_model.encode_images, batched=True, batch_size=16)
print("LBP and Color")
dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'lbp_color_embeddings': merge_features(row['lbp_embeddings'], row['color_embeddings'])})
# Add index
dataset_with_embeddings.add_faiss_index(column='color_embeddings')
dataset_with_embeddings.save_faiss_index('color_embeddings', 'color_index.faiss')
dataset_with_embeddings.add_faiss_index(column='clip_embeddings')
dataset_with_embeddings.add_faiss_index(column='lbp_embeddings')
dataset_with_embeddings.save_faiss_index('clip_embeddings', 'clip_index.faiss')
print(dataset_with_embeddings)
return dataset_with_embeddings
def check_index(ds):
index_path = "my_index.faiss"
if os.path.isfile('color_index.faiss') and os.path.isfile('clip_index.faiss'):
ds.load_faiss_index('color_embeddings', 'color_index.faiss')
return ds.load_faiss_index('clip_embeddings', 'clip_index.faiss')
else:
return index_dataset(ds)
dataset_with_embeddings = check_index(candidate_subset)
# Main function, to find similar images
# TODO: implement different distance measures
def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
"""Returns the top k nearest examples to the query image.
Args:
query_image: A PIL object representing the query image.
top_k: An integer representing the number of nearest examples to return.
Returns:
A list of the top_k most similar images as PIL objects.
"""
if "Color Descriptor" == selected_descriptor:
cd = ColorDescriptor((8, 12, 3))
qi_embedding = cd.describe(query_image)
qi_np = np.array(qi_embedding)
if selected_distance == "FAISS":
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
'color_embeddings', qi_np, k=top_k)
elif selected_distance == "Chi-squared":
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding,row['color_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
else:
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding,row['color_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
return images
if "CLIP" == selected_descriptor:
clip_model = CLIPImageEncoder()
qi_embedding = clip_model.encode_image(query_image)
if selected_distance == "FAISS":
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
'clip_embeddings', qi_embedding, k=top_k)
elif selected_distance == "Chi-squared":
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['clip_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
else:
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['clip_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
images = retrieved_examples['image']
return images
if "LBP" == selected_descriptor:
lbp_model = LBPImageEncoder(8,2)
qi_embedding = lbp_model.describe(query_image)
if selected_distance == "FAISS":
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
'lbp_embeddings', qi_embedding, k=top_k)
elif selected_distance == "Chi-squared":
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
else:
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
images = retrieved_examples['image']
return images
if "LBPColor" == selected_descriptor:
lbp_model = LBPImageEncoder(8,2)
cd = ColorDescriptor((8, 12, 3))
qi_embedding = merge_features(lbp_model.describe(query_image), cd.describe(query_image))
if selected_distance == "FAISS":
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
'lbp_color_embeddings', qi_embedding, k=top_k)
elif selected_distance == "Chi-squared":
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_color_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
else:
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_color_embeddings'])})
retrieved_examples = tmp_dataset.sort("distance")[:5]
images = retrieved_examples['image']
return images
else:
print("This descriptor is not yet supported :(")
return []
# Define the Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("""
# Welcome to this CBIR app
This is a CBIR app focused on the retrieval of similar faces.
## Find similar images
Here you can upload an image, that is compared with existing image in our dataset.
""")
with gr.Row():
image_input = gr.Image(type="pil", label="Please upload your image")
gallery_output = gr.Gallery()
btn = gr.Button(value="Submit")
gr.Markdown("""
## Settings
Here you can adjust how the images are found
""")
with gr.Row():
descr_dropdown = gr.Dropdown(["Color Descriptor", "LBP", "CLIP", "LBPColor"], value="LBP", label="Please choose an descriptor")
dist_dropdown = gr.Dropdown(["FAISS", "Chi-squared", "Euclid"], value="FAISS", label="Please choose a distance measure")
btn.click(get_neighbors, inputs=[image_input, descr_dropdown, dist_dropdown], outputs=[gallery_output])
if __name__ == "__main__":
demo.launch()