from colordescriptor import ColorDescriptor from CLIP import CLIPImageEncoder from LBP import LBPImageEncoder from helper import chi2_distance, euclidean_distance, merge_features import gradio as gr import os import cv2 import numpy as np from datasets import * dataset = load_dataset("nielsr/CelebA-faces", download_mode='force_redownload') dataset.cleanup_cache_files() candidate_subset = dataset["train"].select(range(500)) # This is a small CBIR app! :D def index_dataset(dataset): print(dataset) print("LBP Embeddings") lbp_model = LBPImageEncoder(8,2) dataset_with_embeddings = dataset.map(lambda row: {'lbp_embeddings': lbp_model.describe(row["image"])}) print("Color Embeddings") cd = ColorDescriptor((8, 12, 3)) dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'color_embeddings': cd.describe(row["image"])}) print("CLIP Embeddings") clip_model = CLIPImageEncoder() dataset_with_embeddings = dataset_with_embeddings.map(clip_model.encode_images, batched=True, batch_size=16) print("LBP and Color") dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'lbp_color_embeddings': merge_features(row['lbp_embeddings'], row['color_embeddings'])}) # Add index dataset_with_embeddings.add_faiss_index(column='color_embeddings') dataset_with_embeddings.save_faiss_index('color_embeddings', 'color_index.faiss') dataset_with_embeddings.add_faiss_index(column='clip_embeddings') dataset_with_embeddings.add_faiss_index(column='lbp_embeddings') dataset_with_embeddings.save_faiss_index('clip_embeddings', 'clip_index.faiss') print(dataset_with_embeddings) return dataset_with_embeddings def check_index(ds): index_path = "my_index.faiss" if os.path.isfile('color_index.faiss') and os.path.isfile('clip_index.faiss'): ds.load_faiss_index('color_embeddings', 'color_index.faiss') return ds.load_faiss_index('clip_embeddings', 'clip_index.faiss') else: return index_dataset(ds) dataset_with_embeddings = check_index(candidate_subset) # Main function, to find similar images # TODO: implement different distance measures def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5): """Returns the top k nearest examples to the query image. Args: query_image: A PIL object representing the query image. top_k: An integer representing the number of nearest examples to return. Returns: A list of the top_k most similar images as PIL objects. """ if "Color Descriptor" == selected_descriptor: cd = ColorDescriptor((8, 12, 3)) qi_embedding = cd.describe(query_image) qi_np = np.array(qi_embedding) if selected_distance == "FAISS": scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( 'color_embeddings', qi_np, k=top_k) elif selected_distance == "Chi-squared": tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding,row['color_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] else: tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding,row['color_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings return images if "CLIP" == selected_descriptor: clip_model = CLIPImageEncoder() qi_embedding = clip_model.encode_image(query_image) if selected_distance == "FAISS": scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( 'clip_embeddings', qi_embedding, k=top_k) elif selected_distance == "Chi-squared": tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['clip_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] else: tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['clip_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] images = retrieved_examples['image'] return images if "LBP" == selected_descriptor: lbp_model = LBPImageEncoder(8,2) qi_embedding = lbp_model.describe(query_image) if selected_distance == "FAISS": scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( 'lbp_embeddings', qi_embedding, k=top_k) elif selected_distance == "Chi-squared": tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] else: tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] images = retrieved_examples['image'] return images if "LBPColor" == selected_descriptor: lbp_model = LBPImageEncoder(8,2) cd = ColorDescriptor((8, 12, 3)) qi_embedding = merge_features(lbp_model.describe(query_image), cd.describe(query_image)) if selected_distance == "FAISS": scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples( 'lbp_color_embeddings', qi_embedding, k=top_k) elif selected_distance == "Chi-squared": tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_color_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] else: tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_color_embeddings'])}) retrieved_examples = tmp_dataset.sort("distance")[:5] images = retrieved_examples['image'] return images else: print("This descriptor is not yet supported :(") return [] # Define the Gradio Interface with gr.Blocks() as demo: gr.Markdown(""" # Welcome to this CBIR app This is a CBIR app focused on the retrieval of similar faces. ## Find similar images Here you can upload an image, that is compared with existing image in our dataset. """) with gr.Row(): image_input = gr.Image(type="pil", label="Please upload your image") gallery_output = gr.Gallery() btn = gr.Button(value="Submit") gr.Markdown(""" ## Settings Here you can adjust how the images are found """) with gr.Row(): descr_dropdown = gr.Dropdown(["Color Descriptor", "LBP", "CLIP", "LBPColor"], value="LBP", label="Please choose an descriptor") dist_dropdown = gr.Dropdown(["FAISS", "Chi-squared", "Euclid"], value="FAISS", label="Please choose a distance measure") btn.click(get_neighbors, inputs=[image_input, descr_dropdown, dist_dropdown], outputs=[gallery_output]) if __name__ == "__main__": demo.launch()