File size: 7,267 Bytes
ac1c6ae
 
25ab7f8
fe476eb
ac1c6ae
230d2d3
ac1c6ae
 
 
 
1f0f3e5
2e67a00
6ee3bc1
2710518
ac1c6ae
0ab69ad
ddfac1f
 
 
 
 
ac1c6ae
8e7c132
ac1c6ae
ddfac1f
ac1c6ae
8e7c132
ac1c6ae
a329e3c
cfa8379
fe476eb
b5ddef2
fe476eb
25ab7f8
cfa8379
 
26c2408
ac1c6ae
25ab7f8
d90092b
ac1c6ae
cfa8379
a5c02ba
ac1c6ae
 
26c2408
 
 
 
 
 
 
 
 
cb03df9
f365545
26c2408
ac1c6ae
 
 
 
cb03df9
ac1c6ae
 
 
 
 
 
 
 
 
9a5647a
ac1c6ae
 
 
f9494ca
f365545
 
f9494ca
08a53ae
cb03df9
 
08a53ae
cb03df9
ac1c6ae
 
9a5647a
ac1c6ae
 
c327b2b
 
08a53ae
c327b2b
08a53ae
c327b2b
 
08a53ae
c327b2b
ac1c6ae
 
9a5647a
25ab7f8
c4eb027
c327b2b
 
08a53ae
c327b2b
08a53ae
c327b2b
 
08a53ae
c327b2b
25ab7f8
 
3ae9394
 
 
 
c327b2b
 
08a53ae
c327b2b
08a53ae
c327b2b
 
08a53ae
c327b2b
 
 
3ae9394
 
ac1c6ae
 
 
 
 
 
 
0ab69ad
676881e
 
 
 
 
 
 
 
 
 
 
 
0ab69ad
676881e
 
5a5b371
676881e
 
 
9538cb7
f9494ca
3ae9394
f9494ca
0ab69ad
 
 
194b13d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from colordescriptor import ColorDescriptor
from CLIP import CLIPImageEncoder
from LBP import LBPImageEncoder
from helper import chi2_distance, euclidean_distance, merge_features
import gradio as gr
import os
import cv2
import numpy as np
from datasets import *


dataset = load_dataset("nielsr/CelebA-faces", download_mode='force_redownload')
dataset.cleanup_cache_files()
candidate_subset = dataset["train"].select(range(500)) # This is a small CBIR app! :D

def index_dataset(dataset):
    print(dataset)

    print("LBP Embeddings")
    lbp_model = LBPImageEncoder(8,2)
    dataset_with_embeddings = dataset.map(lambda row: {'lbp_embeddings': lbp_model.describe(row["image"])})

    print("Color Embeddings")
    cd = ColorDescriptor((8, 12, 3))
    dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'color_embeddings': cd.describe(row["image"])})

    print("CLIP Embeddings")
    clip_model = CLIPImageEncoder()
    dataset_with_embeddings = dataset_with_embeddings.map(clip_model.encode_images, batched=True, batch_size=16)

    print("LBP and Color")
    dataset_with_embeddings = dataset_with_embeddings.map(lambda row: {'lbp_color_embeddings': merge_features(row['lbp_embeddings'], row['color_embeddings'])})


    # Add index
    dataset_with_embeddings.add_faiss_index(column='color_embeddings')
    dataset_with_embeddings.save_faiss_index('color_embeddings', 'color_index.faiss')
    dataset_with_embeddings.add_faiss_index(column='clip_embeddings')
    dataset_with_embeddings.add_faiss_index(column='lbp_embeddings')
    dataset_with_embeddings.save_faiss_index('clip_embeddings', 'clip_index.faiss')


    print(dataset_with_embeddings)
    return dataset_with_embeddings


def check_index(ds):
    index_path = "my_index.faiss"
    if os.path.isfile('color_index.faiss') and os.path.isfile('clip_index.faiss'):
        ds.load_faiss_index('color_embeddings', 'color_index.faiss')
        return ds.load_faiss_index('clip_embeddings', 'clip_index.faiss')

    else:
        return index_dataset(ds)


dataset_with_embeddings = check_index(candidate_subset)

# Main function, to find similar images
# TODO: implement different distance measures

def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
    """Returns the top k nearest examples to the query image.

    Args:
        query_image: A PIL object representing the query image.
        top_k: An integer representing the number of nearest examples to return.

    Returns:
        A list of the top_k most similar images as PIL objects.
    """
    if  "Color Descriptor" == selected_descriptor:
        cd = ColorDescriptor((8, 12, 3))
        qi_embedding = cd.describe(query_image)
        qi_np = np.array(qi_embedding)
        if selected_distance == "FAISS":
            scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
                'color_embeddings', qi_np, k=top_k)
        elif selected_distance == "Chi-squared":
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding,row['color_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        else:
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding,row['color_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
        return images
    if "CLIP" == selected_descriptor:
        clip_model = CLIPImageEncoder()
        qi_embedding = clip_model.encode_image(query_image)
        if selected_distance == "FAISS":
            scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
                'clip_embeddings', qi_embedding, k=top_k)
        elif selected_distance == "Chi-squared":
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['clip_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        else:
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['clip_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        images = retrieved_examples['image']
        return images
    if "LBP" == selected_descriptor:
        lbp_model = LBPImageEncoder(8,2)
        qi_embedding = lbp_model.describe(query_image)
        if selected_distance == "FAISS":
            scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
                'lbp_embeddings', qi_embedding, k=top_k)
        elif selected_distance == "Chi-squared":
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        else:
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        images = retrieved_examples['image']
        return images
    if "LBPColor" == selected_descriptor:
        lbp_model = LBPImageEncoder(8,2)
        cd = ColorDescriptor((8, 12, 3))
        qi_embedding = merge_features(lbp_model.describe(query_image), cd.describe(query_image))
        if selected_distance == "FAISS":
            scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
                'lbp_color_embeddings', qi_embedding, k=top_k)
        elif selected_distance == "Chi-squared":
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_color_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        else:
            tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_color_embeddings'])})
            retrieved_examples = tmp_dataset.sort("distance")[:5]
        images = retrieved_examples['image']
        return images


    else:
        print("This descriptor is not yet supported :(")
        return []


# Define the Gradio Interface

with gr.Blocks() as demo:
    gr.Markdown("""
    # Welcome to this CBIR app

    This is a CBIR app focused on the retrieval of similar faces.

    ## Find similar images
    Here you can upload an image, that is compared with existing image in our dataset.
    """)
    with gr.Row():
        image_input = gr.Image(type="pil", label="Please upload your image")
        gallery_output = gr.Gallery()

    btn = gr.Button(value="Submit")
    gr.Markdown("""
    ## Settings
    Here you can adjust how the images are found
    """)

    with gr.Row():
        descr_dropdown = gr.Dropdown(["Color Descriptor", "LBP", "CLIP", "LBPColor"], value="LBP", label="Please choose an descriptor")
        dist_dropdown = gr.Dropdown(["FAISS", "Chi-squared", "Euclid"], value="FAISS", label="Please choose a distance measure")

    btn.click(get_neighbors, inputs=[image_input, descr_dropdown, dist_dropdown], outputs=[gallery_output])


if __name__ == "__main__":
    demo.launch()