bendeguzszabo commited on
Commit
08a53ae
·
1 Parent(s): c327b2b

Update src/app.py

Browse files
Files changed (1) hide show
  1. src/app.py +11 -11
src/app.py CHANGED
@@ -77,10 +77,10 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
77
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
78
  'color_embeddings', qi_np, k=top_k)
79
  elif selected_distance == "Chi-squared":
80
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(histA=qi_embedding, histB=row['color_embeddings'])})
81
  retrieved_examples = tmp_dataset.sort("distance")[:5]
82
  else:
83
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(histA=qi_embedding, histB=row['color_embeddings'])})
84
  retrieved_examples = tmp_dataset.sort("distance")[:5]
85
  images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
86
  return images
@@ -89,12 +89,12 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
89
  qi_embedding = clip_model.encode_image(query_image)
90
  if selected_distance == "FAISS":
91
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
92
- 'clip_embeddings', qi_np, k=top_k)
93
  elif selected_distance == "Chi-squared":
94
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(histA=qi_embedding, histB=row['clip_embeddings'])})
95
  retrieved_examples = tmp_dataset.sort("distance")[:5]
96
  else:
97
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(histA=qi_embedding, histB=row['clip_embeddings'])})
98
  retrieved_examples = tmp_dataset.sort("distance")[:5]
99
  images = retrieved_examples['image']
100
  return images
@@ -103,12 +103,12 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
103
  qi_embedding = lbp_model.describe(query_image)
104
  if selected_distance == "FAISS":
105
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
106
- 'lbp_embeddings', qi_np, k=top_k)
107
  elif selected_distance == "Chi-squared":
108
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(histA=qi_embedding, histB=row['lbp_embeddings'])})
109
  retrieved_examples = tmp_dataset.sort("distance")[:5]
110
  else:
111
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(histA=qi_embedding, histB=row['lbp_embeddings'])})
112
  retrieved_examples = tmp_dataset.sort("distance")[:5]
113
  images = retrieved_examples['image']
114
  return images
@@ -118,12 +118,12 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
118
  qi_embedding = merge_features(lbp_model.describe(query_image), cd.describe(query_image))
119
  if selected_distance == "FAISS":
120
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
121
- 'lbp_color_embeddings', qi_np, k=top_k)
122
  elif selected_distance == "Chi-squared":
123
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(histA=qi_embedding, histB=row['lbp_color_embeddings'])})
124
  retrieved_examples = tmp_dataset.sort("distance")[:5]
125
  else:
126
- tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(histA=qi_embedding, histB=row['lbp_color_embeddings'])})
127
  retrieved_examples = tmp_dataset.sort("distance")[:5]
128
  images = retrieved_examples['image']
129
  return images
 
77
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
78
  'color_embeddings', qi_np, k=top_k)
79
  elif selected_distance == "Chi-squared":
80
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding,row['color_embeddings'])})
81
  retrieved_examples = tmp_dataset.sort("distance")[:5]
82
  else:
83
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding,row['color_embeddings'])})
84
  retrieved_examples = tmp_dataset.sort("distance")[:5]
85
  images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
86
  return images
 
89
  qi_embedding = clip_model.encode_image(query_image)
90
  if selected_distance == "FAISS":
91
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
92
+ 'clip_embeddings', qi_embedding, k=top_k)
93
  elif selected_distance == "Chi-squared":
94
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['clip_embeddings'])})
95
  retrieved_examples = tmp_dataset.sort("distance")[:5]
96
  else:
97
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['clip_embeddings'])})
98
  retrieved_examples = tmp_dataset.sort("distance")[:5]
99
  images = retrieved_examples['image']
100
  return images
 
103
  qi_embedding = lbp_model.describe(query_image)
104
  if selected_distance == "FAISS":
105
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
106
+ 'lbp_embeddings', qi_embedding, k=top_k)
107
  elif selected_distance == "Chi-squared":
108
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_embeddings'])})
109
  retrieved_examples = tmp_dataset.sort("distance")[:5]
110
  else:
111
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_embeddings'])})
112
  retrieved_examples = tmp_dataset.sort("distance")[:5]
113
  images = retrieved_examples['image']
114
  return images
 
118
  qi_embedding = merge_features(lbp_model.describe(query_image), cd.describe(query_image))
119
  if selected_distance == "FAISS":
120
  scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
121
+ 'lbp_color_embeddings', qi_embedding, k=top_k)
122
  elif selected_distance == "Chi-squared":
123
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_color_embeddings'])})
124
  retrieved_examples = tmp_dataset.sort("distance")[:5]
125
  else:
126
+ tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_color_embeddings'])})
127
  retrieved_examples = tmp_dataset.sort("distance")[:5]
128
  images = retrieved_examples['image']
129
  return images