Spaces:
Runtime error
Runtime error
bendeguzszabo
commited on
Commit
·
08a53ae
1
Parent(s):
c327b2b
Update src/app.py
Browse files- src/app.py +11 -11
src/app.py
CHANGED
@@ -77,10 +77,10 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
|
|
77 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
78 |
'color_embeddings', qi_np, k=top_k)
|
79 |
elif selected_distance == "Chi-squared":
|
80 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(
|
81 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
82 |
else:
|
83 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(
|
84 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
85 |
images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
|
86 |
return images
|
@@ -89,12 +89,12 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
|
|
89 |
qi_embedding = clip_model.encode_image(query_image)
|
90 |
if selected_distance == "FAISS":
|
91 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
92 |
-
'clip_embeddings',
|
93 |
elif selected_distance == "Chi-squared":
|
94 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(
|
95 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
96 |
else:
|
97 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(
|
98 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
99 |
images = retrieved_examples['image']
|
100 |
return images
|
@@ -103,12 +103,12 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
|
|
103 |
qi_embedding = lbp_model.describe(query_image)
|
104 |
if selected_distance == "FAISS":
|
105 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
106 |
-
'lbp_embeddings',
|
107 |
elif selected_distance == "Chi-squared":
|
108 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(
|
109 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
110 |
else:
|
111 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(
|
112 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
113 |
images = retrieved_examples['image']
|
114 |
return images
|
@@ -118,12 +118,12 @@ def get_neighbors(query_image, selected_descriptor, selected_distance, top_k=5):
|
|
118 |
qi_embedding = merge_features(lbp_model.describe(query_image), cd.describe(query_image))
|
119 |
if selected_distance == "FAISS":
|
120 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
121 |
-
'lbp_color_embeddings',
|
122 |
elif selected_distance == "Chi-squared":
|
123 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(
|
124 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
125 |
else:
|
126 |
-
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(
|
127 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
128 |
images = retrieved_examples['image']
|
129 |
return images
|
|
|
77 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
78 |
'color_embeddings', qi_np, k=top_k)
|
79 |
elif selected_distance == "Chi-squared":
|
80 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding,row['color_embeddings'])})
|
81 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
82 |
else:
|
83 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding,row['color_embeddings'])})
|
84 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
85 |
images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
|
86 |
return images
|
|
|
89 |
qi_embedding = clip_model.encode_image(query_image)
|
90 |
if selected_distance == "FAISS":
|
91 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
92 |
+
'clip_embeddings', qi_embedding, k=top_k)
|
93 |
elif selected_distance == "Chi-squared":
|
94 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['clip_embeddings'])})
|
95 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
96 |
else:
|
97 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['clip_embeddings'])})
|
98 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
99 |
images = retrieved_examples['image']
|
100 |
return images
|
|
|
103 |
qi_embedding = lbp_model.describe(query_image)
|
104 |
if selected_distance == "FAISS":
|
105 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
106 |
+
'lbp_embeddings', qi_embedding, k=top_k)
|
107 |
elif selected_distance == "Chi-squared":
|
108 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_embeddings'])})
|
109 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
110 |
else:
|
111 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_embeddings'])})
|
112 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
113 |
images = retrieved_examples['image']
|
114 |
return images
|
|
|
118 |
qi_embedding = merge_features(lbp_model.describe(query_image), cd.describe(query_image))
|
119 |
if selected_distance == "FAISS":
|
120 |
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
|
121 |
+
'lbp_color_embeddings', qi_embedding, k=top_k)
|
122 |
elif selected_distance == "Chi-squared":
|
123 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': chi2_distance(qi_embedding, row['lbp_color_embeddings'])})
|
124 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
125 |
else:
|
126 |
+
tmp_dataset = dataset_with_embeddings.map(lambda row: {'distance': euclidean_distance(qi_embedding, row['lbp_color_embeddings'])})
|
127 |
retrieved_examples = tmp_dataset.sort("distance")[:5]
|
128 |
images = retrieved_examples['image']
|
129 |
return images
|