File size: 22,402 Bytes
4ae7ed4
 
2ac9a74
56f965d
 
ca385b8
a9ca168
4ae7ed4
56f965d
4ae7ed4
2ac9a74
2bfda0e
4ae7ed4
2ac9a74
6548944
4ae7ed4
f12166f
2ac9a74
 
 
 
 
 
 
 
77389d5
4ae7ed4
 
e003b30
d7282dc
4ae7ed4
e1b05e1
e003b30
4ae7ed4
0772061
e003b30
 
4ae7ed4
e003b30
 
 
4ae7ed4
e003b30
 
 
 
 
 
 
 
 
 
 
 
9bd334d
0772061
 
 
e1b05e1
 
 
def49fe
 
e1b05e1
5cc7611
7752a10
def49fe
7752a10
 
 
 
5cc7611
7752a10
e1b05e1
def49fe
7752a10
 
5cc7611
def49fe
e1b05e1
7752a10
469ba8d
def49fe
 
 
 
 
 
 
 
 
 
 
a336a91
56f965d
d7282dc
 
 
56f965d
d7282dc
 
56f965d
d7282dc
 
56f965d
d7282dc
 
56f965d
d7282dc
 
 
 
 
56f965d
d7282dc
 
 
56f965d
d7282dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f965d
d7282dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f965d
d7282dc
 
56f965d
d7282dc
 
56f965d
 
 
d7282dc
 
 
 
 
 
 
 
 
 
56f965d
 
 
 
 
 
d7282dc
56f965d
 
 
 
 
 
 
 
 
d7282dc
 
 
56f965d
 
 
d7282dc
56f965d
 
 
d7282dc
56f965d
d7282dc
56f965d
 
d7282dc
56f965d
 
 
 
 
d7282dc
 
 
 
 
 
 
 
 
 
 
 
 
 
56f965d
d7282dc
56f965d
 
 
d7282dc
 
 
 
 
 
 
56f965d
d7282dc
56f965d
 
 
 
d7282dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f965d
 
 
 
 
 
 
 
a9ca168
7752a10
e1b05e1
9bd334d
 
 
e1b05e1
9bd334d
 
 
 
5cc7611
9bd334d
 
 
 
cbd7b69
9bd334d
 
 
 
cbd7b69
9bd334d
 
 
 
cbd7b69
9bd334d
 
def49fe
9bd334d
5cc7611
 
 
9bd334d
 
 
 
 
5cc7611
 
 
9bd334d
 
 
 
5cc7611
def49fe
 
9bd334d
 
 
def49fe
 
 
 
 
 
 
 
9bd334d
5cc7611
 
9bd334d
 
 
 
5cc7611
def49fe
9bd334d
 
 
 
 
56f1eb3
def49fe
9bd334d
 
 
 
def49fe
 
56f1eb3
def49fe
 
 
 
 
 
 
ac04073
 
3a46f4e
 
 
 
def49fe
 
 
 
 
 
 
 
3af1043
cbd7b69
def49fe
cbd7b69
39a319b
b0659f7
3af1043
 
def49fe
3af1043
def49fe
3af1043
def49fe
3af1043
56f1eb3
3af1043
 
 
56f1eb3
3af1043
56f1eb3
 
3af1043
 
8cd8669
56f1eb3
3af1043
 
 
def49fe
 
 
39e581e
 
3af1043
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import streamlit as st
import pandas as pd
import sqlite3
import tempfile
from fpdf import FPDF
import threading
import time
import os
import re
import json
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries.")

# Initialize LLM
llm = None


# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)

# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")

if model_choice == "llama-3.3-70b":
    if not groq_api_key:
        st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
        llm = None
    else:
        llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
    if not openai_api_key:
        st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
        llm = None
    else:
        llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")

if llm is None:
    st.error("❌ LLM is not initialized. Please check your API keys and model selection.")

# Initialize session state for data persistence
if "df" not in st.session_state:
    st.session_state.df = None
if "show_preview" not in st.session_state:
    st.session_state.show_preview = False  

# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])

if input_option == "Use Hugging Face Dataset":
    dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
    if st.button("Load Dataset"):
        try:
            with st.spinner("Loading dataset..."):
                dataset = load_dataset(dataset_name, split="train")
                st.session_state.df = pd.DataFrame(dataset)
                st.session_state.show_preview = True  # Show preview after loading
                st.success(f"Dataset '{dataset_name}' loaded successfully!")
        except Exception as e:
            st.error(f"Error: {e}")

elif input_option == "Upload CSV File":
    uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
    if uploaded_file:
        try:
            st.session_state.df = pd.read_csv(uploaded_file)
            st.session_state.show_preview = True  # Show preview after loading
            st.success("File uploaded successfully!")
        except Exception as e:
            st.error(f"Error loading file: {e}")

# Show Dataset Preview Only After Loading
if st.session_state.df is not None and st.session_state.show_preview:
    st.subheader("πŸ“‚ Dataset Preview")
    st.dataframe(st.session_state.df.head())


# Helper Function for Validation
def is_valid_suggestion(suggestion):
    chart_type = suggestion.get("chart_type", "").lower()

    if chart_type in ["bar", "line", "box", "scatter"]:
        return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])

    elif chart_type == "pie":
        return all(k in suggestion for k in ["chart_type", "x_axis"])

    elif chart_type == "heatmap":
        return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])

    else:
        return False
        
def ask_gpt4o_for_visualization(query, df, llm, retries=2):
    import json

    # Identify numeric and categorical columns
    numeric_columns = df.select_dtypes(include='number').columns.tolist()
    categorical_columns = df.select_dtypes(exclude='number').columns.tolist()

    # Prompt with Dataset-Specific, Query-Based Examples
    prompt = f"""
    Analyze the following query and suggest the most suitable visualization(s) using the dataset.
    **Query:** "{query}"
    **Dataset Overview:**  
    - **Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'}  
    - **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'}  
    Suggest visualizations in this exact JSON format:
    [
      {{
        "chdart_type": "bar/box/line/scatter/pie/heatmap",
        "x_axis": "categorical_or_time_column",
        "y_axis": "numeric_column",
        "group_by": "optional_column_for_grouping",
        "title": "Title of the chart",
        "description": "Why this chart is suitable"
      }}
    ]
    **Query-Based Examples:**  
    - **Query:** "What is the salary distribution across different job titles?"  
      **Suggested Visualization:**  
      {{
        "chart_type": "box",
        "x_axis": "job_title",
        "y_axis": "salary_in_usd",
        "group_by": "experience_level",
        "title": "Salary Distribution by Job Title and Experience",
        "description": "A box plot to show how salaries vary across different job titles and experience levels."
      }}
    - **Query:** "Show the average salary by company size and employment type."  
      **Suggested Visualizations:**  
      [
        {{
          "chart_type": "bar",
          "x_axis": "company_size",
          "y_axis": "salary_in_usd",
          "group_by": "employment_type",
          "title": "Average Salary by Company Size and Employment Type",
          "description": "A grouped bar chart comparing average salaries across company sizes and employment types."
        }},
        {{
          "chart_type": "heatmap",
          "x_axis": "company_size",
          "y_axis": "salary_in_usd",
          "group_by": "employment_type",
          "title": "Salary Heatmap by Company Size and Employment Type",
          "description": "A heatmap showing salary concentration across company sizes and employment types."
        }}
      ]
    - **Query:** "How has the average salary changed over the years?"  
      **Suggested Visualization:**  
      {{
        "chart_type": "line",
        "x_axis": "work_year",
        "y_axis": "salary_in_usd",
        "group_by": "experience_level",
        "title": "Average Salary Trend Over Years",
        "description": "A line chart showing how the average salary has changed across different experience levels over the years."
      }}
    - **Query:** "What is the employee distribution by company location?"  
      **Suggested Visualization:**  
      {{
        "chart_type": "pie",
        "x_axis": "company_location",
        "y_axis": null,
        "group_by": null,
        "title": "Employee Distribution by Company Location",
        "description": "A pie chart showing the distribution of employees across company locations."
      }}
    - **Query:** "Is there a relationship between remote work ratio and salary?"  
      **Suggested Visualization:**  
      {{
        "chart_type": "scatter",
        "x_axis": "remote_ratio",
        "y_axis": "salary_in_usd",
        "group_by": "experience_level",
        "title": "Remote Work Ratio vs Salary",
        "description": "A scatter plot to analyze the relationship between remote work ratio and salary."
      }}
    - **Query:** "Which job titles have the highest salaries across regions?"  
      **Suggested Visualization:**  
      {{
        "chart_type": "heatmap",
        "x_axis": "job_title",
        "y_axis": "employee_residence",
        "group_by": null,
        "title": "Salary Heatmap by Job Title and Region",
        "description": "A heatmap showing the concentration of high-paying job titles across regions."
      }}
    Only suggest visualizations that logically match the query and dataset.
    """

    for attempt in range(retries + 1):
        try:
            response = llm.generate(prompt)
            suggestions = json.loads(response)

            if isinstance(suggestions, list):
                valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)]
                if valid_suggestions:
                    return valid_suggestions
                else:
                    st.warning("⚠️ GPT-4o did not suggest valid visualizations.")
                    return None

            elif isinstance(suggestions, dict):
                if is_valid_suggestion(suggestions):
                    return [suggestions]
                else:
                    st.warning("⚠️ GPT-4o's suggestion is incomplete or invalid.")
                    return None

        except json.JSONDecodeError:
            st.warning(f"⚠️ Attempt {attempt + 1}: GPT-4o returned invalid JSON.")
        except Exception as e:
            st.error(f"⚠️ Error during GPT-4o call: {e}")

        if attempt < retries:
            st.info("πŸ”„ Retrying visualization suggestion...")

    st.error("❌ Failed to generate a valid visualization after multiple attempts.")
    return None


def add_stats_to_figure(fig, df, y_axis, chart_type):
    """
    Add relevant statistical annotations to the visualization 
    based on the chart type.
    """
    # Check if the y-axis column is numeric
    if not pd.api.types.is_numeric_dtype(df[y_axis]):
        st.warning(f"⚠️ Cannot compute statistics for non-numeric column: {y_axis}")
        return fig

    # Compute statistics for numeric data
    min_val = df[y_axis].min()
    max_val = df[y_axis].max()
    avg_val = df[y_axis].mean()
    median_val = df[y_axis].median()
    std_dev_val = df[y_axis].std()

    # Format the stats for display
    stats_text = (
        f"πŸ“Š **Statistics**\n\n"
        f"- **Min:** ${min_val:,.2f}\n"
        f"- **Max:** ${max_val:,.2f}\n"
        f"- **Average:** ${avg_val:,.2f}\n"
        f"- **Median:** ${median_val:,.2f}\n"
        f"- **Std Dev:** ${std_dev_val:,.2f}"
    )

    # Apply stats only to relevant chart types
    if chart_type in ["bar", "line"]:
        # Add annotation box for bar and line charts
        fig.add_annotation(
            text=stats_text,
            xref="paper", yref="paper",
            x=1.02, y=1,
            showarrow=False,
            align="left",
            font=dict(size=12, color="black"),
            bordercolor="gray",
            borderwidth=1,
            bgcolor="rgba(255, 255, 255, 0.85)"
        )

        # Add horizontal reference lines
        fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
        fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
        fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
        fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")

    elif chart_type == "scatter":
        # Add stats annotation only, no lines for scatter plots
        fig.add_annotation(
            text=stats_text,
            xref="paper", yref="paper",
            x=1.02, y=1,
            showarrow=False,
            align="left",
            font=dict(size=12, color="black"),
            bordercolor="gray",
            borderwidth=1,
            bgcolor="rgba(255, 255, 255, 0.85)"
        )

    elif chart_type == "box":
        # Box plots inherently show distribution; no extra stats needed
        pass

    elif chart_type == "pie":
        # Pie charts represent proportions, not suitable for stats
        st.info("πŸ“Š Pie charts represent proportions. Additional stats are not applicable.")

    elif chart_type == "heatmap":
        # Heatmaps already reflect data intensity
        st.info("πŸ“Š Heatmaps inherently reflect distribution. No additional stats added.")

    else:
        st.warning(f"⚠️ No statistical overlays applied for unsupported chart type: '{chart_type}'.")

    return fig


# Dynamically generate Plotly visualizations based on GPT-4o suggestions
def generate_visualization(suggestion, df):
    """
    Generate a Plotly visualization based on GPT-4o's suggestion.
    If the Y-axis is missing, infer it intelligently.
    """
    chart_type = suggestion.get("chart_type", "bar").lower()
    x_axis = suggestion.get("x_axis")
    y_axis = suggestion.get("y_axis")
    group_by = suggestion.get("group_by")

    # Step 1: Infer Y-axis if not provided
    if not y_axis:
        numeric_columns = df.select_dtypes(include='number').columns.tolist()

        # Avoid using the same column for both axes
        if x_axis in numeric_columns:
            numeric_columns.remove(x_axis)

        # Smart guess: prioritize salary or relevant metrics if available
        priority_columns = ["salary_in_usd", "income", "earnings", "revenue"]
        for col in priority_columns:
            if col in numeric_columns:
                y_axis = col
                break

        # Fallback to the first numeric column if no priority columns exist
        if not y_axis and numeric_columns:
            y_axis = numeric_columns[0]

    # Step 2: Validate axes
    if not x_axis or not y_axis:
        st.warning("⚠️ Unable to determine appropriate columns for visualization.")
        return None

    #  Step 3: Dynamically select the Plotly function
    plotly_function = getattr(px, chart_type, None)
    if not plotly_function:
        st.warning(f"⚠️ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
        return None

    #  Step 4: Prepare dynamic plot arguments
    plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
    if group_by and group_by in df.columns:
        plot_args["color"] = group_by

    try:
        # Step 5: Generate the visualization
        fig = plotly_function(**plot_args)
        fig.update_layout(
            title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
            xaxis_title=x_axis.replace('_', ' ').title(),
            yaxis_title=y_axis.replace('_', ' ').title(),
        )

        # Step 6: Apply statistics intelligently
        fig = add_statistics_to_visualization(fig, df, y_axis, chart_type)

        return fig

    except Exception as e:
        st.error(f"⚠️ Failed to generate visualization: {e}")
        return None


def generate_multiple_visualizations(suggestions, df):
    """
    Generates one or more visualizations based on GPT-4o's suggestions.
    Handles both single and multiple suggestions.
    """
    visualizations = []

    for suggestion in suggestions:
        fig = generate_visualization(suggestion, df)
        if fig:
            # Apply chart-specific statistics
            fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"])
            visualizations.append(fig)

    if not visualizations and suggestions:
        st.warning("⚠️ No valid visualization found. Displaying the most relevant one.")
        best_suggestion = suggestions[0]
        fig = generate_visualization(best_suggestion, df)
        fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"])
        visualizations.append(fig)

    return visualizations


def handle_visualization_suggestions(suggestions, df):
    """
    Determines whether to generate a single or multiple visualizations.
    """
    visualizations = []

    # If multiple suggestions, generate multiple plots
    if isinstance(suggestions, list) and len(suggestions) > 1:
        visualizations = generate_multiple_visualizations(suggestions, df)
    
    # If only one suggestion, generate a single plot
    elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1):
        suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions
        fig = generate_visualization(suggestion, df)
        if fig:
            visualizations.append(fig)
    
    # Handle cases when no visualization could be generated
    if not visualizations:
        st.warning("⚠️ Unable to generate any visualization based on the suggestion.")

    # Display all generated visualizations
    for fig in visualizations:
        st.plotly_chart(fig, use_container_width=True)


def escape_markdown(text):
    # Ensure text is a string
    text = str(text)
    # Escape Markdown characters: *, _, `, ~
    escape_chars = r"(\*|_|`|~)"
    return re.sub(escape_chars, r"\\\1", text)


# SQL-RAG Analysis
if st.session_state.df is not None:
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "data.db")
    connection = sqlite3.connect(db_path)
    st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")

    @tool("list_tables")
    def list_tables() -> str:
        """List all tables in the database."""
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        """Get the schema and sample rows for the specified tables."""
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        """Execute a SQL query against the database and return the results."""
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    @tool("check_sql")
    def check_sql(sql_query: str) -> str:
        """Validate the SQL query syntax and structure before execution."""
        return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})

    # Agents for SQL data extraction and analysis
    sql_dev = Agent(
        role="Senior Database Developer",
        goal="Extract data using optimized SQL queries.",
        backstory="An expert in writing optimized SQL queries for complex databases.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql, check_sql],
    )

    data_analyst = Agent(
        role="Senior Data Analyst",
        goal="Analyze the data and produce insights.",
        backstory="A seasoned analyst who identifies trends and patterns in datasets.",
        llm=llm,
    )

    report_writer = Agent(
        role="Technical Report Writer",
        goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
        backstory="Specializes in detailed analytical reports without conclusions.",
        llm=llm,
    )

    conclusion_writer = Agent(
        role="Conclusion Specialist",
        goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
        backstory="An expert in crafting impactful and clear conclusions.",
        llm=llm,
    )

    # Define tasks for report and conclusion
    extract_data = Task(
        description="Extract data based on the query: {query}.",
        expected_output="Database results matching the query.",
        agent=sql_dev,
    )

    analyze_data = Task(
        description="Analyze the extracted data for query: {query}.",
        expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
        agent=data_analyst,
        context=[extract_data],
    )

    write_report = Task(
        description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
        expected_output="Markdown-formatted report excluding Conclusion.",
        agent=report_writer,
        context=[analyze_data],
    )

    write_conclusion = Task(
        description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries."
                    "Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.",
        expected_output="Markdown-formatted Conclusion section with key insights and statistics.",
        agent=conclusion_writer,
        context=[analyze_data],
    )

    # Separate Crews for report and conclusion
    crew_report = Crew(
        agents=[sql_dev, data_analyst, report_writer],
        tasks=[extract_data, analyze_data, write_report],
        process=Process.sequential,
        verbose=True,
    )

    crew_conclusion = Crew(
        agents=[data_analyst, conclusion_writer],
        tasks=[write_conclusion],
        process=Process.sequential,
        verbose=True,
    )

    # Tabs for Query Results and Visualizations
    tab1 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])

    # Query Insights + Visualization
    with tab1:
        query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
        if st.button("Submit Query"):
            with st.spinner("Processing query..."):
                # Step 1: Generate the analysis report
                report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
                report_result = crew_report.kickoff(inputs=report_inputs)

                # Step 2: Generate only the concise conclusion
                conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
                conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)

                # Step 3: Display the report
                #st.markdown("### Analysis Report:")
                st.markdown(report_result if report_result else "⚠️ No Report Generated.")

                # Step 4: Generate Visualizations


                # Step 5: Insert Visual Insights
                st.markdown("### Visual Insights")


                # Step 6: Display Concise Conclusion
                #st.markdown("#### Conclusion")
                st.markdown(conclusion_result if conclusion_result else "⚠️ No Conclusion Generated.")


# Sidebar Reference
with st.sidebar:
    st.header("πŸ“š Reference:")
    st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")